emou.ru

Приведение системы сил к заданному центру. Приведение плоской системы сил к данной точке Приведение плоской системы сил к единому центру

Лекция 5

Краткое содержание: Приведение силы к заданному центру. Приведение системы сил к заданному центру. Условия равновесия пространственной системы параллельных сил. Условия равновесия плоской системы сил. Теорема о трех моментах. Статически определимые и статически неопределимые задачи. Равновесие системы тел.

ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ЗАДАННОМУ ЦЕНТРУ. УСЛОВИЯ РАВНОВЕСИЯ

Приведение силы к заданному центру.

Равнодействующая системы сходящихся сил непосредственно находится с помощью сложения сил по правилу параллелограмма. Очевидно, что аналогичную задачу можно будет решить и для произвольной системы сил, если найти для них метод, позволяющий перенести все силы в одну точку.

Теорема о параллельном переносе силы . Силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого ею действия, переносить из данной точки в любую другую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится.

Пусть сила приложена в точке A. Действие этой силы не изменяется, если в точке B приложить две уравновешенные силы. Полученная система трех сил представляет собой силу равную , но приложенную в точке В и пару с моментом . Процесс замены силы силой и парой сил называется приведением силы к заданному центру В.

Приведение системы сил к заданному центру.

Основная теорема статики (Пуансо).

Любую произвольную систему сил, действующую на твердое тело, можно в общем случае привести к силе и паре сил. Этот процесс замены системы сил одной силой и одной парой сил называется приведением системы сил к заданному центру .

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

Главным моментом системы сил относительно точки О тела, называется вектор, равный векторной сумме моментов всех сил системы относительно этой точки.

Формулы для вычисления главного вектора и главного момента

Формулы для вычисления модуля и направляющих косинусов

главного вектора и главного момента

Условия равновесия системы сил.

Векторная форма.

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю.

Алгебраическая форма.

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю.

Условия равновесия пространственной системы

параллельных сил.

На тело действует система параллельных сил. Расположим ось Oz параллельно силам.

Уравнения

Для равновесия пространственной системы параллельных сил, действующих на твердое тело, необходимо и достаточно, чтобы сумма проекций этих сил была равна нулю и суммы моментов этих сил относительно двух координатных осей, перпендикулярным силам, также были равны нулю.

- проекция силы на ось Oz.

ПЛОСКАЯ СИСТЕМА СИЛ.

Условия равновесия плоской системы сил.

На тело действует плоская система сил. Расположим оси Ox и Oy в плоскости действия сил.

Уравнения

Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных осей координат, расположенных в плоскости действия сил, были равны нулю и сумма моментов этих сил относительно любой точки, находящейся в плоскости действия сил также была равна нулю.

Теорема о трех моментах.

Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы моментов этих сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю.

Статически определимые и статически неопределимые задачи.

Для любой плоской системы сил, действующих на твердое тело, имеется три независимых условия равновесия. Следовательно, для любой плоской системы сил из условий равновесия можно найти не более трех неизвестных.

В случае пространственной системы сил, действующих на твердое тело, имеется шесть независимых условия равновесия. Следовательно, для любой пространственной системы сил из условий равновесия можно найти не более шести неизвестных.

Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются статически определимыми .

В противном случае задачи статически неопределимы.

Равновесие системы тел.

Рассмотрим равновесие сил, приложенных к системе взаимодействующих между собой тел. Тела могут быть соединены между собой с помощью шарниров или иным способом.

Силы, действующие на рассматриваемую систему тел, можно разделить на внешние и внутренние.

Внешними называются силы, с которыми на тела рассматриваемой системы действуют тела, не входящие в эту систему сил.

Внутренними называются силы взаимодействия между телами рассматриваемой системы.

При рассмотрении равновесия сил, приложенных к системе тел, можно мысленно расчленить систему тел на отдельные твердые тела и к силам, действующим на эти тела, применить условия равновесия, полученные для одного тела. В эти условия равновесия войдут как внешние, так и внутренние силы системы тел. Внутренние силы на основании аксиомы о равенстве сил действия и противодействия в каждой точке сочленения двух тел образуют равновесную систему сил.

Покажем это на примере системы двух тел и плоской системы сил.

Если составить условия равновесия для каждого твердого тела системы тел, то для тела I

.

для тела II

Кроме того, из аксиомы о равенстве сил действия и противодействия для двух взаимодействующих тел имеем .

Представленные равенства и есть условия равновесия внешних сил, действующих на систему.

Реакция заделки.

Рассмотрим балку один конец которой АВ заделан в стену. Такое крепление конца балки АВ называется заделкой в точке В. Пусть на балку действует плоская система сил. Определим силы, которые надо приложить к точке В балки, если часть балки АВ отбросить. К сечению балки (В) приложены распределенные силы реакции. Если эти силы заменить элементарными сосредоточенными силами и затем привести их к точке В, то в точке В получим силу (главный вектор сил реакции) и пару сил с моментом М (главный вектор сил реакции относительно точки В) . Момент М называют моментом заделки или рективным моментом. Силу реакции можно заменить двумя составляющими и.

Заделка в отличие от шарнира создает не только неизвестную по величине и направлению реакцию , но еще и пару сил с неизвестным моментом М в заделке.

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .

Моментом силы F относительно данной точки О называется произведение величины силы на ее плечо, т. е. на длину перпендикуляра, опущенного из точки О на линию действия этой силы.

Если сила F стремится вращать тело вокруг данной точки О в направлении, обратном движению часовой стрелки, то условимся моменг силы F относительно точки О считать положительным; если же сила стремится вращать тело вокруг точки О в направлении, совпадающем с направлением движения часовой стрелки, то момент силы относительно этой точки будем считать отрицательным. Следовательно,

Если линия действия силы F проходит через данную точку О, то момент силы F относительно этой точки равен нулю.

Сложение сил, расположенных как угодно на плоскости, можно выполнить двумя способами:

1) последовательным сложением;

2) приведением данной системы сил к произвольно выбранному центру.

Первый способ становится громоздким при большом числе слагаемых сил и неприменим для пространственной системы сил, второй же способ является общим, более простым и удобным.

Если задана система сил , расположенных как угодно в одной плоскости, то, перенося все эти силы в произвольно выбранную в этой плоскости точку О, называемую центром приведения, получим приложенную в этом центре силу

и пару с моментом

Геометрическая сумма сил данной системы называется равным вектором этой системы сил.

Алгебраическая сумма моментов сил плоской системы относительно какой-нибудь точки О плоскости их действия называется главным моментом этой системы сил относительно этой точки О.

Главный момент изменяется с изменением центра приведения; зависимость главного момента от выбора центра приведения выражается следующей формулой:

где и - два различных центра приведения.

Так как сила R и пара с моментом , получающаяся в результате приведения данной плоской системы сил к центру О, лежат в одной плоскости, то их можно привести к одной силе , приложенной в некоторой точке . Эта сила является равнодействующей данной плоской системы сил.

Таким образом, если , то система сил приводится к одной равнодействующей, не проходящей через центр приведения О. При этом момент равнедействующей относительно любой точки будет равен алгебраической сумме моментов всех данных сил относительно той же точки (теорема Вариньона).

Если начало координат выбрано в центре приведения и известны проекции всех сил на оси координат и координаты точек приложения этих сил, то момент равнодействующей находим по формуле

Если в результате приведения системы сил к данному центру окажется, что главный вектор этой системы рпвен нулю, а главный момент ее отличен от нуля, то данная система эквивалентна паре сил, причем главный момент системы равен моменту этой пары и не зависит в данном случае от выбора центра приведения. Если то система приводится к равнодействующей, приложенной в центре приведения О.

Если и , то система сил находится в равновесии. Все случаи, встречающиеся при сложении сил плоской системы, можно представить в виде табл. 3.

Таблица 3

Равновесие плоской системы сил рассмотрим в следующем параграфе, а теперь перейдем к решению задач на сложение сил плоской системы.

Пример 13. Дана плоская система четырех сил проекции X и Y этих сил на координатные оси, координаты х, у точек их приложения заданы в табл. 4.

Таблица 4

Привести эту систему к началу координат и затем найти линию действия равнодействующей.

Решение. Найдем проекции главного вектора заданной системы сил на координатные оси по формуле (14)

Главный момент находим по формуле (15)

Пусть - точка линии действия искомой равнодействующей . Тогда

С другой стороны, по теореме Вариньона имеем:

Следовательно,

Это и есть уравнение линии действия равнодействующей.

Пример 14. Найти равнодействующую четырех сил, действующих по сторонам правильного шестиугольника, направление которых указано на рис. 30, если .

Решение. Выберем за центр приведения центр О шестиугольника и найдем главный вектор R и главный момент данной системы сил относительно центра О. Так как , то главный вектор R равен , а главный момент

Для того чтобы найти момент силы , относительно точки О, опустим перпендикуляр СМ, из точки О на линию действия этой силы. Так как сила , стремится вращать шестиугольник вокруг точки О по часовой стрелке, то

Решим теперь задачу о приведении произвольней системы сил к данному центру, т. е. о замене данной системы сил другой, ей эквивалентной, но значительно более простой, а именно состоящей, как мы увидим, только из одной силы и пары.

Пусть на твердое тело действует произвольная система сил (рис. 40, а).

Выберем какую-нибудь точку О за центр приведения и, пользуясь теоремой, доказанной в § 11, перенесем все силы в центр О, присоединяя при этом соответствующие пары (см. рис. 37, б). Тогда на тело будет действовать система сил

приложенных в центре О, и система пар, моменты которых согласно формуле (18) равны:

Сходящиеся силы, приложенные в точке О, заменяются одной силой R, приложенной в точке О. При этом или, согласно равенствам (19),

Чтобы сложить все полученные пары, надо сложить векторы моментов этих пар. В результате система пар заменится одной парой, момент которой или, согласно равенствам (20),

Как известно, величина R, равная геометрической сумме всех сил, называется главным вектором системы величина равная геометрической сумме моментов всех сил относительно центра О, называется главным моментом системы сил относительно этого центра.

Таким образом, мы доказали следующую теорему о приведении системы сил: любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно выбранному центру О заменяется одной силой R, равной главному вектору системы сил и приложенной в центре приведения О, и одной парой с моментом равным главному моменту системы сил относительно центра О (рис. 40, б).

Заметим, что сила R не является здесь равнодействующей данной системы сил, так как заменяет систему сил не одна, а вместе с парой.

Из доказанной теоремы следует, что две системы сил, имеющие одинаковые главные векторы и главные моменты относительно одного и того же центра, эквивалентны (условия эквивалентности систем сил).

Отметим еще, что значение R от выбора центра О, очевидно, не зависит. Значение же при изменении положения центра О может в общем случае изменяться вследствие изменения значений моментов отдельных сил. Поэтому всегда необходимо указывать, относительно какого центра определяется главный момент.

Теорема о приведении системы сил:

Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R , равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом L O , равным главному моменту системы сил относительно центра О.

Такая эквивалентная замена данной системы сил силой R и парой сил с моментом L O называютприведением системы сил к центу О .

Рассмотрим здесь частный случай приведения плоской системы сил к центру О, лежащему в той же плоскости. В этом случае система сил заменяется одной силой и одной парой сил, лежащих в плоскости действия сил системы. Момент этой пары сил можно рассматривать как алгебраическую величину L O и изображать на рисунках дуговой стрелкой (алгебраический главный момент плоской системы сил ).

В результате приведения плоской системы сил к центру возможны следующие случаи:

    если R = 0, L O = 0, то заданная система является равновесной ;

    если хотя бы одна из величин R или L O не равна нулю, то система сил не находится в равновесии . При этом:

16 Вопрос. Уравнение равновесия

Для равновесия твердрго тела, находящегося под действием плоской системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее алгебраический главный момент были равны нулю, то есть R = 0, L O = 0, где О - любой центр, расположенный в плоскости действия сил системы.

Вытекающие отсюда аналитические условия равновесия (уравнения равновесия) плоской системы сил можно сформулировать в следующих трех формах:

    Основная форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из координатных осей и сумма их алгебраических моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю:

F ix = 0; F iy = 0; M O (F i) = 0. (I)

    Вторая форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно двух центров А и В и сумма их проекций на ось Ox, не перпендикулярную оси Ox, были равны нулю:

F ix = 0; M А (F i) = 0; M В (F i) = 0. (II)

    Третья форма уравнений равновесия (уравнения трех моментов):

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно любых трех центров А,В и С, не лежащих на одной прямой, были равны нулю:

M А (F i) = 0; M В (F i) = 0; M С (F i) = 0. (III)

Уравнения равновесия в форме (I) считаются основными, так как при их использовании нет никаких ограничений на выбор координатных осей и центра моментов.

17 Вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O 1 . Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: M O1Z =åM o1z (F k) (5.11). С другой стороны, имеем M O1Z =M Olz (R), (5.12) так как главный момент для центра приведения О равен нулю (M Oz =0). Сравнивая соотношения (5.11) и (5.12), получаем M O1z (R)=åM OlZ (F k); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R 1 приложена в какой-либо точке О 1 с координатами х и у (рис. 5.5) и известны главный вектор F o и главный момент М Оя при центре приведения в начале координат. Так как R 1 =F o , то составляющие равнодей­ствующей по осям х и у равны R lx =F Ox =F Ox i и R ly =F Oy =F oy j. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. М оz =M Oz (R 1)=xF Oy –yF Ox . (5.14). Величины M Oz , F Ox и F oy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При F ox ≠0 его можно переписать в виде y=(F oy /F ox)x–(M oz /F ox).



Загрузка...