emou.ru

Методы кха. Количественный химический анализ. И способы их приготовления

В нормативном документе на метод измерений должно регламентироваться, сколько (одно или несколько) единичных наблюдений должно быть выполнено, способы их усреднения (среднее арифметическое значение результатов многократных наблюдений, медиана или стандартное отклонение) и способы представления в качестве результата измерений (или результата испытаний). Может потребоваться введение стандартных поправок (например, таких как приведение объема газа к нормальной температуре и давлению). Таким образом, результат измерений (испытаний) может быть представлен как результат, рассчитанный из нескольких наблюдаемых значений. В простейшем случае результат измерений (испытаний) является собственно наблюдаемым значением).

Согласно «ПМГ 96-2009 ГСИ. Результаты и характеристики качества измерений. Формы представления», результат измерений представляют именованным или неименованным числом. Совместно с результатом измерений представляют характеристики его погрешности или их статистические оценки. Представление результатов измерений, полученных как среднее арифметическое значение результатов многократных наблюдений, сопровождают указанием числа наблюдений и интервала времени, в течение которого они проведены.

Точность результата химического анализа. Нормативы контроля точности результата измерения содержания контролируемого компонента в пробе анализируемого вещества, процедуры и периодичность контроля

Согласно «ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения»:

точность с тепень близости результата измерений к принятому опорному значению.

принятое опорное значение - значение, которое служит в качестве согласованного для сравнения и получено как:

а) теоретическое или установленное значение, базирующееся на научных принципах;

b) приписанное или аттестованное значение, базирующееся на экспериментальных работах какой-либо национальной или международной организации;

с) согласованное или аттестованное значение, базирующееся на совместных экспериментальных работах под руководством научной или инженерной группы;

d) математическое ожидание измеряемой характеристики, то есть среднее значение заданной совокупности результатов измерений - лишь в случае, когда а), b) и с) недоступны.

Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической погрешности.

правильность –степень близости среднего значения, полученного на основании большой серии результатов измерений (или результатов испытаний), к принятому опорному значению. Примечания: Показателем правильности обычно является значение систематической погрешности.

систематическая погрешность – разность между математическим ожиданием результатов измерений и истинным (или в его отсутствие - принятым опорным) значением. Примечания: Истинное значение величины неизвестно, его применяют только в теоретических исследованиях.

В качестве составляющих систематической погрешности измерений выделяют неисключенную систематическую погрешность составляющую систематической погрешности измерений, обусловленную несовершенством реализации принятого принципа измерений, погрешность градуировки применяемого средства измерений) и др.

прецизионность – степень близости друг к другу независимых результатов измерений, полученных повторно в конкретных регламентированных условиях. Примечания: Прецизионность зависит только от случайных погрешностей и не имеет отношения к истинному или установленному значению измеряемой величины. Меру прецизионности обычно выражают в терминах неточности и вычисляют как стандартное отклонение результатов измерений. Меньшая прецизионность соответствует большему стандартному отклонению. "Независимые результаты измерений (или испытаний)" - результаты, полученные способом, на который не оказывает влияния никакой предшествующий результат, полученный при испытаниях того же самого или подобного объекта. Количественные значения мер прецизионности существенно зависят от регламентированных условий. Крайними случаями совокупностей таких условий являются условия повторяемости и условия воспроизводимости.

повторяемость (синоним сходимость ) – прецизионность в условиях повторяемости.

условия повторяемости (сходимости) – условия, при которых независимые результаты измерений (или испытаний) получают повторно одним и тем же методом на идентичных объектах испытаний, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования, в пределах короткого промежутка времени.

воспроизводимость – прецизионность в условиях воспроизводимости.

условия воспроизводимости – условия, при которых результаты измерений (или испытаний) получают повторно одним и тем же методом , на идентичных объектах испытаний, в разное время, в разных лабораториях, разными операторами, с использованием различного оборудования, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Нормативы контроля точности результата измерения – это показатели повторяемости (сходимости),воспроизводимости и правильности результата измерений.

Наша лаборатория предлагает широкий спектр по проведению анализов необходимых при выполнении следующих работ:

· Мониторингокружающей среды

· Паспортизация отходов (разработка паспорта опасного отхода)

· Определение компонентного состава отхода производства

· Расчет класса опасности отхода

· Анализ воды, воздуха, продуктов и мн.др.

Когда ведется разработка паспорта на опасный отход необходимо провести определение состава отхода. Обязательным документом при согласовании паспорта отходов является - протокол КХА (количественного химического анализа), который делается нашей лабораторией, которая аккредитована на данный вид деятельности. Протокол КХА составляется после проведения анализа пробы и содержит сведения о компонентном составе отхода.

Состав указывается в мг/кг сухого вещества и в % соотношении на сухое веществе. Также протокол КХА содержит информацию о нормативных документах на методику выполнения измерения. Кроме того, протокол количественного химического анализа на опасный отход содержит сведения о юридическом лице или индивидуальном предпринимателе (наименование организации и юридический адрес), а также информацию о лаборатории, выполнявшей анализ пробы опасного отхода.

При оформлении документов для получения лицензии на осуществление деятельности по сбору, использованию, обезвреживанию, транспортировке, размещению отходов I-IV класса опасности, также необходимы протоколы КХА на опасные отходы. В этом случае протоколы КХА используются для указания сведений о компонентном составе заявленных в лицензии отходов I-IV класса опасности.

Очень важно при проведении КХА учитывать оценку показателей качества методик количественного химического анализа (КХА)

Защите окружающей среды от возрастающего действия химических веществ уделяется все большее внимание во всем мире. В нашей стране на основании Закона РФ "Об обеспечении единства измерений" охрана окружающей среды относится к сфере государственного метрологического контроля и надзора.

В основе всех мероприятий по предотвращению или снижению загрязнения окружающей среды лежит контроль за содержанием вредных веществ. Контроль необходим для получения информации об уровне загрязнения. Оценкой загрязненности объектов окружающей среды является предельно допустимая концентрация (ПДК). Нормируемые ПДК должны формировать требования к точности контроля загрязненности и регламентировать необходимый уровень метрологического обеспечения состояния окружающей среды.

Количественный химический анализ (КХА) - это экспериментальное определение содержания массовой или объемной доли одного или нескольких компонентов в пробе физическими, химическими и физико-химическими методами.

КХА - основной инструмент обеспечения достоверности получаемых результатов анализа объектов окружающей среды.

Особенность КХА заключается в том, что измеряется состав многокомпонентных систем. Измерение состава затруднено эффектами взаимного влияния компонентов, что определяет сложность процедуры химического анализа. Характерным для анализа как измерительного процесса является то, что определяемый компонент, распределенный в матрице пробы, химически связан с компонентами матрицы.

На результат измерения и на показатель их точности могут оказывать влияние также и другие физико-химические факторы пробы. Это приводит к необходимости:

во-первых, нормирования влияющих величин для каждой методики,
во-вторых, использования аттестованных веществ, адекватных анализируемым пробам (на этапе контроля точности результатов измерений).

Основной целью метрологического обеспечения измерений при мониторинге и контроле окружающей среды является обеспечение единства и требуемой точности результатов измерений показателей загрязненности.

В многогранной и сложной работе по обеспечению единства измерений в стране важнейшее место отводится разработке и аттестации методик выполнения измерений (МВИ). Об этом достаточно наглядно свидетельствует тот факт, что в Закон Российской Федерации "Об обеспечении единства измерений" включена отдельная 9 статья, которая гласит: "Измерения должны осуществляться в соответствии с аттестованными в установленном порядке методиками выполнения измерений".

В связи с введением ГОСТ Р ИСО 5725-2002 внесены изменения в государственный стандарт Российской Федерации ГОСТ Р 8.563-96 "ГСИ. Методики выполнения измерений", определяющий порядок разработки и аттестации методик выполнения измерений, включая методики количественного химического анализа (КХА). Согласно требованиям данного стандарта, организации должны иметь перечни документов на методики КХА, применяемые в сферах распространения государственного метрологического контроля и надзора в данной организации, а также планы отмены и пересмотра документов для методик КХА, не удовлетворяющих требованиям стандарта. Кроме того, в этих планах должно быть предусмотрено проведение аттестации и, в необходимых случаях, стандартизация методик КХА.

В шести стандартах ГОСТ Р ИСО 5725-2002 детально и конкретно (с примерами) изложены основные положения и определения показателей точности методов измерений (МВИ) и результатов измерений, способы экспериментальной оценки показателей точности и использования значений точности на практике. Следует обратить внимание на представленную в стандарте ГОСТ Р ИСО 5725 новую терминологию.

В соответствии с ГОСТ Р 5725-1-2002 - 5725-6-2002 в описании точности КХА используется три термина: прецизионность, правильность и точность.

Прецизионность - степень близости друг к другу независимых результатов измерений, полученных в конкретных установленных условиях. Эта характеристика зависит только от случайных факторов и не связана с истинным значением или принятым опорным значением.

Точность - степень близости результата анализа к истинному или принятому опорному значению.

Опорное значение - значение, которое служит в качестве согласованного. В качестве опорного значения может быть принято:

· теоретическое или научно установленное значение;

· аттестованное значение СО;

· аттестованное значение смеси (АС);

· математическое ожидание измеряемой характеристики, т.е. среднее значение заданной совокупности результатов анализа.

На изменчивость результата химического анализа могут оказывать различные факторы: время (интервал времени между измерениями), калибровка, оператор, оборудование, параметры окружающей среды.

В зависимости от влияющих факторов прецизионность результатов анализа включает:

· прецизионность анализа в условиях повторяемости - условия при которых результаты анализа получают по одной и той же методике в одной и той же лаборатории, одним и тем же оператором с использованием одного и того же оборудования, практически одновременно (параллельные определения);

· прецизионность анализа в условиях воспроизводимости - условия при которых результаты анализа получают по одной и той же методике в разных лабораториях, варьируя различными факторами (разное время, оператор, условия окружающей среды);

· внутрилабораторную прецизионность анализа - условия при которых результаты анализа получают по одной и той же методике в одной и той же лаборатории при вариации различных факторов (время, оператор, разные партии реактивов и т.д.).

Мерой оценки прецизионности является среднеквадратическое отклонение (СКО):

r - СКО повторяемости;
R - СКО воспроизводимости;
Rл - СКО внутрилабораторной прецизионности).

СКО характеризует разброс любого результата из ряда наблюдений относительно среднего результата анализа () и обозначается S.

Выборочное S рассчитывают по формуле:

где i - результат i - определения;
- среднее арифметическое результатов параллельных определений;
N - количество параллельных определений.

Оценка производится по выборочному среднеквадратическому отклонению S ~ S ,

где - генеральная совокупность результатов измерений.

Качественными характеристиками методик и результатов анализа являются: точность, повторяемость, внутрилабораторная прецизионность, воспроизводимость, правильность.

Для лаборатории важно оценить качество результатов анализа, полученных с использованием методики в течение длительного промежутка времени. При накоплении статистического материала по результатам внутрилабораторного контроля возможно в соответствии с ГОСТ Р ИСО 5725-6, РМГ 76-2004 проведение контроля стабильности среднеквадратичного отклонения (СКО) повторяемости, среднеквадратичного отклонения (СКО) промежуточной прецизионности, показателя правильности с применением карт Шухарта. Контроль стабильности проводят для каждого анализируемого в лаборатории показателя состава в соответствии с применяемой методикой. Причем контроль стабильности правильности проводят только для тех показателей, для которых имеются достаточно стабильные во времени средства контроля в виде ГСО, ОСО, СОП, АС или градуировочные растворы.

В соответствии с выбранным алгоритмом проведения контрольных процедур получают результаты контрольных измерений и формируют контрольные процедуры. Контрольные карты допустимо строить ближе к началу, середине и концу диапазона измеряемых концентраций.

Стабильность СКО повторяемости, СКО промежуточной прецизионности, показателя правильности оценивают сравнением расхождений, полученных за определенный период результатов анализа контролируемого показателя в образце с рассчитанными при построении контрольных карт с пределами предупреждения и действия. Результаты контроля стабильности с применением контрольных карт Шухарта, приведены в ГОСТ Р ИСО 5725-6.

Методика выполнения измерений рассматривается как совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с известной погрешностью. Гарантированность погрешности измерений представляет собой главный, решающий признак МВИ. Ранее в соответствии с требованиями нормативных документов каждому результату анализа приписывали погрешность, рассчитанную при метрологическом исследовании методики и закрепленную за методикой при ее аттестации. В ГОСТ Р ИСО 5725-2002 введено дополнительное понятие - погрешность лаборатории. Таким образом, лаборатория имеет право оценить свою погрешность для каждой МВИ, причем она не должна превышать приписанную и в соответствии РМГ 76-2004 оформить протокол установленных показателей качества результатов анализа при реализации методики анализа в лаборатории.

Кроме того, ранее для оценки метрологических характеристик аналитических измерений содержания компонента в исследуемых объектах достаточно было провести внутрилабораторный эксперимент. Современный регламент аттестации методик количественного химического анализа предписывает проведение межлабораторного эксперимента с участием не менее восьми лабораторий с соблюдением идентичных условий измерений (одинаковые методы, однородные материалы). Только при метрологическом исследовании методик, требующих уникального оборудования, допускается статистическая обработка результатов внутрилабораторного эксперимента.

В методике обязательно должны быть указаны характеристики погрешности и значения пределов повторяемости (если в методике предусмотрены параллельные определения) и воспроизводимости. В самом крайнем случае должна быть указана хотя бы одна из составляющих погрешности, либо общая погрешность. Если нет и этого, то методика не может применяться и ссылки на нее не допускаются.

Но в тоже время в соответствии с требованиями РМГ 61-2003 при невозможности организации эксперимента в разных лабораториях, допускается экспериментальные данные получать в одной лаборатории в условиях внутрилабораторой прецизионности, варьируя максимально различными факторами. В этом случае показатель воспроизводимости методики анализа в виде среднего квадратичного отклонения рассчитывают по формуле:

R = k·S Rл,

где SRл - выборочное СКО результатов анализа, полученное в условиях внутрилабораторной прецизионности;

k - коэффициент, который может принимать значения от 1,2 до 2,0.

В соответствии с ГОСТ Р 8.563-2009 методики, которые предназначены для использования в сфере распространения государственного метрологического контроля и надзора должны быть аттестованы и внесены в Федеральный реестр. Учреждениями, имеющими право на аттестацию, являются:

Всероссийский научно-исследовательский институт метрологии и сертификации (ВНИИМС),

Уральский научно-исследовательский институт метрологии (УНИИМ),

Всероссийский научно-исследовательский институт метрологии (ВНИИМ) им. Менделеева (Центр исследования и контроля качества воды (ЦИКВ, г. С-Петербург),

Гидрохимический институт федеральной службы по гидрометеорологии и мониторингу окружающей среды, ЗАО "РОСА" (г. Москва).

За государственную регистрацию аттестованных методик и за соблюдением авторских прав организации-разработчика ответственность несет Всероссийский научно-исследовательский институт метрологии и сертификации (ВНИИМС).

Методики, не используемые в сферах распространения государственного метрологического контроля и надзора, аттестуются в порядке, установленном на предприятии. Если метрологическая служба предприятия аккредитована на право выполнения аттестации методик, то она может осуществлять метрологическую экспертизу методик, которые применяются в сфере распространения государственного метрологического контроля и надзора.

Стоимость выполнения наших услуг формируется индивидуально

для каждого предприятия, позволяя учесть все аспекты в области охраны окружающей среды

Как связаться с нами?

Мы дорожим нашей репутацией и вашим доверием

Свидетельства, гарантирующие высокое качество услуг

  • Свидетельства аккредитации по экоаудиту ЭАО № Н-12-094
  • Свидетельство СРО № 1806.00-2013-7719608182-П-177
  • Свидетельство о применении в работе информационно правовой системы «ЭКОЮРС» № ЭЮС-10309/12
  • Удостоверение аудитора Тютюнченко Евгения Валерьевича № Н-10-03-12-1000

Р 50.2.008-2001

Государственная система обеспечения
единства измерений

МЕТОДИКИ КОЛИЧЕСТВЕННОГО
ХИМИЧЕСКОГО АНАЛИЗА

ГОССТАНДАРТ РОССИИ

Москва

Предисловие

1 РАЗРАБОТАНЫ Государственным унитарным предприятием Всероссийским научно-исследовательским институтом метрологии им. Д.И. Менделеева Госстандарта России

ВНЕСЕНЫ Управлением метрологии Госстандарта России

2 ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Госстандарта России от 20 июня 2001 г. № 244-ст

3 ВВЕДЕНЫ ВПЕРВЫЕ

Р 50.2.008-2001

Государственная система обеспечения единства измерений

МЕТОДИКИ КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА

Дата введения 2002-01-01

1 Область применения

Настоящие рекомендации предназначены для государственных научных метрологических центров, проводящих метрологическую экспертизу документов на методики количественного химического анализа (далее - метрологическая экспертиза МКХА) в соответствии с ГОСТ Р 8.563.

2 Нормативные ссылки

ГОСТ 8.221-76 Государственная система обеспечения единства измерений. Влагометрия и гигрометрия. Термины и определения

а) документ или проект документа, регламентирующий МКХА;

б) техническое задание на разработку МКХА или другой документ, содержащий исходные данные для разработки (кроме случаев, когда соответствующие данные содержатся в государственных, межгосударственных или международных стандартах, распространяющихся на анализируемый объект);

в) копию свидетельства о метрологической аттестации МКХА (если она была проведена). Одновременно Заявителем могут быть представлены дополнительные материалы: программа и результаты (в виде отчетов, протоколов) экспериментального или расчетного оценивания метрологических характеристик МКХА, нормативные документы (в том числе ведомственные), регламентирующие контроль точности результатов измерений, и др. Кроме того, дополнительные материалы представляются Заявителем по запросу ГНМЦ, проводящего экспертизу (см. ).

Если Заявитель считает необходимым сформулировать вопросы для экспертизы, то они должны быть изложены в письменной форме (например, в сопроводительном письме в адрес ГНМЦ).

5 Содержание метрологической экспертизы МКХА

5.1 В общем случае при метрологической экспертизе МКХА подвергают критическому анализу (оценивают):

Правильность наименований измеряемых величин и обозначений их единиц;

Выбор средств измерений (в том числе стандартных образцов);

Соответствие метрологических характеристик МКХА заданным требованиям;

Процедуры контроля погрешности результатов измерений;

Полноту изложения требований, правил и операций;

Правильность метрологических терминов.

5.2 По желанию Заявителя или в связи с особенностями назначения МКХА при метрологической экспертизе могут быть рассмотрены и другие аспекты, например: метрологический уровень данной методики по отношению к другим методикам аналогичного назначения, перспективы стандартизации МКХА, рациональность выбора метода анализа.

6 Порядок проведения метрологической экспертизы МКХА

6.1 Метрологическую экспертизу МКХА выполняет эксперт или группа экспертов, уполномоченная руководителем (заместителем руководителя) ГНМЦ.

Экспертом может быть сотрудник ГНМЦ, проработавший в нем не менее трех лет, имеющий опыт аттестации (разработки) не менее пяти МКХА, ориентирующийся в отечественных и международных нормативных документах, относящихся к обеспечению единства измерений. Предпочтительно, чтобы эксперт (руководитель группы экспертов) имел базовое высшее образование в области химии и являлся аттестованным экспертом Системы аккредитации аналитических лабораторий (центров). Эксперту должны быть известны общие принципы и способы оценивания погрешности измерений -, особенности КХА как измерительной процедуры, специфические методы и приемы обеспечения достоверности результатов КХА -, роль и место КХА при контроле качества продукции и состояния объектов окружающей среды -. Эксперту следует систематически повышать свою квалификацию, в частности знакомиться с соответствующими публикациями в специализированных научно-технических периодических изданиях.

Эксперты несут ответственность за правильное, объективное и своевременное выполнение работы, а также за нераспространение информации конфиденциального характера. Руководитель группы экспертов формулирует задачи членам группы, обобщает их оценки и мнения.

6.2 Метрологическая экспертиза МКХА включает в себя следующие этапы:

Регистрацию документов, поступивших на экспертизу;

Предварительный анализ документов;

Запрос дополнительных документов (при необходимости), их регистрацию;

Оценивание соответствия МКХА метрологическим требованиям;

Составление экспертного заключения, его утверждение и передачу Заявителю.

6.3 Документы, поступившие на метрологическую экспертизу, регистрируют в журнале, рекомендуемая форма которого приведена в . Допускается совмещать регистрацию документов на МКХА с регистрацией документов других видов, подлежащих метрологической экспертизе, например проектов стандартов.

7.2.5 При изложении МКХА, регламентирующих измерение нескольких величин, характеризующих химический состав, иногда употребляют их обобщающее наименование: «содержание i ]. При экспертизе подобных МКХА необходимо убедиться в том, что употребление обобщающего наименования не приводит к сокращению или искажению измерительной информации, не создает предпосылок для различных трактовок текста МКХА. Обобщающее наименование не следует употреблять при описании конкретных измерительных задач, при указании метрологических характеристик, а также в пояснениях к расчетным формулам и при оформлении результатов измерений.

7.2.6 Единицы измеряемых величин должны соответствовать ГОСТ 8.417 с учетом руководящего документа .

7.2.7 Примеры типичных ошибок:

а) «Количество цинка в 10 см 3 раствора 15 ммоль» вместо правильного «Количество вещества цинка в 10 см 3 раствора 15 ммоль»;

б) «Растворенный кислород 60 мкмоль/дм 3 » вместо правильного «Молярная концентрация растворенного кислорода 60 мкмоль, дм 3 »;

г) «Количество ионов кадмия в градуировочном растворе 2,00 мкг/5 см 3 » вместо правильного «Масса кадмия в 5 см 3 градуировочного раствора 2,00 мкг»;

д) «Сухой остаток в воде 5 мг/100 г» вместо правильного «Массовая доля сухого остатка в воде 0,05 %».

7.3 Оценивание выбора средств измерений

а) соответствие целей применения выбранного средства измерений (в том числе стандартного образца) назначению, зафиксированному в описании типа или в технических документах на средства измерений;

б) возможность использования средства измерений в заданных условиях;

в) достижимость требуемой точности результатов измерений при использовании средства измерений с установленными для данного типа метрологическими характеристиками;

г) рациональность выбора средств измерений;

д) соответствие требованиям к средствам измерений, применяемым в сфере распространения государственного метрологического контроля и надзора.

7.3.2 Сведения о назначении и основных характеристиках средств измерений утвержденных типов могут быть заимствованы из описаний типов, из публикаций в журналах «Измерительная техника», «Законодательная и прикладная метрология», а также из баз данных, сформированных ВНИИМС (для средств измерений) и УНИИМ (для государственных стандартных образцов).

7.3.3 Достижимость требуемой точности оценивают расчетом границ соответствующей инструментальной составляющей погрешности результатов измерений и сопоставлением найденного значения с пределами (границами) погрешности, указанными в документе на МКХА. Эта процедура является достаточной в тех случаях, когда инструментальная составляющая погрешности преобладает над методической.

Примеры выявленных ошибок:

а) Для измерений высоты хроматографического пика применяют линейку с ценой деления 1 мм; пределы допускаемой погрешности ± 0,5 мм. Высота пика определяемого компонента, соответствующая нижней границе массовой концентрации компонента в анализируемом объекте, составляет » 4 мм. Пределы относительной погрешности измерений высоты пика в этом случае составят ± 12 %, что явно не соответствует приписанной характеристике погрешности результата измерений массовой концентрации компонента ± 10 %, указанной в документе на МКХА.

б) Методика выполнения измерений массовой концентрации компонента в выбросах промышленного предприятия предусматривает отбор газовой пробы с помощью аспиратора (при постоянном значении ее объемного расхода 4 дм 3 /мин) в поглотительный раствор и последующий анализ раствора фотоколориметрическим методом. Норма для границ относительной погрешности измерения массовой концентрации компонента при контроле источников загрязнения атмосферы ± 25 % . Границы относительной погрешности анализа поглотительного раствора фотоколориметрическим методом обычно составляют 10 % - 20 %. Для измерений объемного расхода газового потока применяют ротаметр с верхним пределом измерений 20 дм 3 /мин и пределами допускаемой основной приведенной погрешности ± 5 %. Пределы относительной погрешности измерений объемного расхода (при введении поправок) составят ± 25 %. Сравнение значений составляющих погрешности с нормой указывает на невозможность достижения требуемой точности при применении выбранного типа расходомера.

7.3.4 При оценивании рациональности выбора средств измерений могут быть использованы рекомендации , , , а также ГОСТ Р 1.11.

7.3.5 Если МКХА предназначена для применения в сфере распространения государственного метрологического контроля и надзора, то эксперт должен убедиться, что типы применяемых средств измерений зарегистрированы в Государственном реестре средств измерений утвержденных типов, стандартные образцы - в Государственном реестре утвержденных типов стандартных образцов.

7.3.6 Следует иметь в виду, что применяемые в МКХА пробоотборные и дозирующие устройства могут иметь либо статус средств измерений, либо статус вспомогательного оборудования. В последнем случае оценивание по не проводят.

7.3.7 Наряду с веществами и материалами, имеющими статус средств измерений (стандартных образцов состава и свойств веществ и материалов по , эталонных материалов ВНИИМ по , аттестованных смесей по ), функции мер в МКХА могут выполнять чистые вещества и реактивы, выпускаемые по стандартам и техническим условиям изготовителей (вещества известного состава по ), а также чистые вещества, растворы, смеси, получаемые по процедуре, регламентированной в документе на МКХА.

7.4 Оценивание соответствия метрологических характеристик МЕХА заданным требованиям

а) технического задания на разработку МКХА или других документов, требования которых распространяются на данную МКХА. (Такими документами могут быть стандарты, технические условия, методические указания, программы испытаний и др.);

б) ГОСТ Р 8.563 - в части указания диапазона измерений и формы представления характеристик погрешности.

Задача эксперта заключается также в выявлении недостоверных приписанных характеристик погрешности измерений или ошибочных выводов о соответствии погрешности измерений установленным нормам.

7.4.2 Указанные в документе на МКХА диапазоны измерений (интервалы значений измеряемой величины) и приписанные характеристики погрешности сопоставляют с требованиями, приведенными в документах по , перечисление а).

Примеры : Метрологические характеристики МКХА природных и сточных вод сопоставляют с требованиями ГОСТ 27384 и ГОСТ 8.556, метрологические характеристики МКХА атмосферного воздуха - с требованиями ГОСТ 17.2.4.02.

7.4.3 Если требования к погрешности в явном виде не установлены, то сопоставляют границы (пределы) погрешности, указанные в документе на МКХА с допуском на контролируемую величину.

Пример . В технических условиях на химический продукт указано, что массовая доля примесного компонента «В» (W в ) не должна превышать 0,50 %. При контроле необходимо надежно различать продукт надлежащего качества с W в = 0,50 % и продукт с W в = 0,51 %. Для этого необходимо получать результаты измерений, погрешность которых не превышает 0,003 % (при соответствующих экономических обоснованиях - 0,005 %).

Полезные указания по выполнению подобных сопоставлений содержатся в рекомендациях , , ; применительно к химическому анализу методология описана в .

7.4.4 Иногда разработчики МКХА не ограничивают диапазон измерений сверху, ссылаясь на возможность варьирования массы отбираемой для анализа пробы, ее разбавления и т.п. Подобная практика не соответствует требованиям ГОСТ Р 8.563.

Другие примеры несоответствий:

Указание «предела обнаружения» вместо нижней границы диапазона измерений;

Представление характеристики погрешности измерений в форме, не позволяющей указать ее значение для каждого из значений измеряемой величины в диапазоне измерений;

Указание характеристик только случайной составляющей погрешности;

Указание норматива контроля погрешности (без указания характеристики погрешности).

7.4.5 Если эксперт сомневается в достоверности приписанных характеристик погрешности измерений или правильности выводов о соответствии погрешности измерений установленным нормам, то он должен приближенно рассчитать границы погрешности. Источниками сомнения могут быть личный опыт и интуиция эксперта, существенные отличия характеристик погрешности от установленных для подобных МКХА, явно упрощенный алгоритм обработки данных, несогласованность характеристик и нормативов контроля погрешности и т.п.

В большинстве случаев такой расчет целесообразно проводить для наименьшего (наибольшего) значения измеряемой величины. Общая методология расчета изложена в , , алгоритмы расчета приведены в , -, применительно к химическому анализу - в рекомендациях , . Кроме того, эксперты могут пользоваться документом ЕВРАХИМ . Рассчитанная в соответствии с этим документом расширенная неопределенность (при коэффициентах охвата 2 и 3) практически равна границе погрешности при доверительной вероятности 0,95 и 0,99 .

При выполнении расчетов эксперту следует опираться на экспериментальные данные, представленные Заявителем, сведения о метрологических характеристиках средств измерений, нормативы контроля составляющих погрешности (если они приведены в документе на МКХА).

а) термин «погрешность» употреблен вместо «границы погрешности» или «пределы погрешности»;

б) термин «характеристика погрешности» (или «показатель точности») употреблен без указания на то, какая именно характеристика имеется в виду: «границы погрешности», «пределы погрешности» или «среднее квадратическое отклонение погрешности»;

в) термин «пределы погрешности» употреблен с указанием вероятности, отличной от единицы;

г) термин «границы погрешности» употреблен без указания доверительной вероятности;

д) границы относительной погрешности указаны с избыточным числом значащих цифр (например, ± 19,8 % вместо ± 20 %);

е) граница диапазона измерений указана с избыточным числом значащих цифр (например, 100,0 мг/дм 3 вместо 100 мг/дм 3);

ж) границы относительной погрешности измерений массовой доли основного компонента в техническом продукте указаны без учета ограничений, налагаемых физической моделью (± 2,0 % для верхней границы диапазона измерений 99,5 %);

и) границы относительной погрешности результата измерений объемной доли примесного компонента в техническом продукте составляют ± 100 %;

к) значения характеристик случайной составляющей погрешности указаны без пояснения условий, которым они соответствуют (например, условий сходимости, внутри- или межлабораторной воспроизводимости);

л) характеристика погрешности установлена только для простейшей модельной смеси (т.е. без учета реальных сопутствующих компонентов) или для неоправданно суженной области значений внешних влияющих факторов;

м) характеристика погрешности установлена без учета стадий отбора и подготовки проб, хотя эти стадии включены в МКХА.

7.5 Оценивание процедур контроля погрешности результатов измерений

7.5.1 Эксперт оценивает:

Наличие в МКХА процедур оперативного контроля;

Правильность выбора средств контроля;

Взаимоувязанность нормативов контроля и характеристик погрешности измерений.

7.5.2 Следует иметь в виду, что контрольная процедура может охватывать сразу все стадии МКХА («комплексный контроль») или только некоторые из них. Методы комплексного контроля погрешности измерений (анализов), а также их сходимости и воспроизводимости описаны в рекомендации . Контроль отдельных стадий осуществляют в тех случаях, когда комплексный контроль технически не может быть реализован или нерационален. Такой контроль может быть проведен также дополнительно к комплексному; при этом чаще всего контролируют степень разделения или извлечения компонентов, погрешность построения градуировочной характеристики и ее стабильность. Во всех случаях, когда значение измеряемой величины (в том числе, промежуточной) вычисляют путем усреднения результатов, полученных при проведении повторных измерений (определений), целесообразен контроль их сходимости.

7.5.3 Документ на МКХА может не описывать процедуры контроля погрешности, но при этом должен содержать указание о проведении контроля в соответствии с каким-либо нормативным документом.

Пример . При анализе питьевой воды контроль погрешности может быть проведен по ГОСТ Р 51232; при анализе золота - по ГОСТ 27973.0; при анализе минерального сырья - по отраслевому стандарту ; при анализе природной воды в сетевых лабораториях Росгидромета - по руководящему документу .

7.5.4 При оценивании правильности выбора средств контроля эксперт должен обращать внимание на отношение границы (предела) погрешности результата измерений по МКХА к границе (пределу) погрешности средства контроля. Для обеспечения достоверности контроля это отношение, как правило, должно быть не менее 3 (при наличии соответствующего обоснования - не менее 2).

Если в качестве средства контроля применяют смесь (раствор), методика приготовления которого описана в приложении к МКХА, то эксперт должен приближенно рассчитать границы погрешности, с которой устанавливается содержание определяемого компонента в смеси (растворе), При этом могут быть применены рекомендации , .

Если в качестве средства контроля применяют стандартный образец, то его категория должна соответствовать области применения МКХА.

7.5.5 При оценивании взаимоувязанности нормативов оперативного контроля и характеристик погрешности измерений целесообразно руководствоваться рекомендацией при комплексном контроле, рекомендациями , - при контроле погрешности построения и стабильности градуировочной характеристики. Эксперт должен обращать внимание на четкость формулирования условий контроля внутрилабораторной воспроизводимости, поскольку норматив контроля зависит от того, какие именно из факторов (время, оператор, оборудование, градуировка) варьируются от анализа к анализу. Эта зависимость имеет место также при контроле погрешности методом добавок; методом разбавления проб; методом, сочетающим добавку и разбавление. Если анализ пробы без добавки и с добавкой проводят в условиях постоянства вышеуказанных факторов, то норматив контроля погрешности, рассчитанный по методике , будет существенно завышен.

7.5.6 Примеры типичных ошибок:

а) термины «контроль сходимости результатов определений», «норматив контроля сходимости результатов определений» употреблены без указания на то, какой именно параметр контролируют: «размах результатов определений», «отклонение результата определения от среднего арифметического...», среднее квадратическое отклонение результатов определений», «среднее квадратическое отклонение среднего арифметического...» и т.п.;

б) допускаемое расхождение двух результатов анализа приведено без указания условий их получения и доверительной вероятности;

г) норматив для «размаха двух результатов параллельных определений, отнесенного к среднему арифметическому (Р = 0,95)», равный 30 %, не согласуется с границами относительной погрешности результата анализа ± 10 %, Р = 0,95 (анализ включает в себя два определения).

7.6 Оценивание полноты изложения требований, правил и операций

7.6.1 Эксперт должен последовательно рассмотреть разделы документа на МКХА и приложения к нему. При этом целесообразно задаваться вопросами: «Достаточно ли информации для проведения анализа с требуемой точностью?», «Нет ли в данном разделе положений, не согласующихся с требованиями ГОСТ Р 8.563, других государственных стандартов либо с другими положениями документа на МКХА?», «Не допускает ли данная формулировка различные трактовки, которые могут стать причиной неконтролируемой погрешности?».

7.6.2 Особое внимание эксперт должен уделить тем требованиям (правилам, операциям), которые в наибольшей степени влияют на качество получаемых данных. При этом необходимо руководствоваться имеющимися в литературе сведениями об ограничениях и источниках погрешности, характерных для реализуемых методов отбора и анализа проб, а также оценками, полученными при расчете границ погрешности результатов измерений (см. ).

7.6.3 Недостатки, наиболее часто встречающиеся в документах на МКХА:

Не указаны ограничения, обусловленные мешающими компонентами проб;

Не сформулированы требования к содержанию основного компонента в чистом веществе, применяемом для приготовления градуировочных смесей;

Не установлены сроки хранения градуировочных смесей;

Отсутствуют критерии качества градуировки;

Не приведены критерии идентификации компонентов, критерии разделения (при анализе многокомпонентных проб методами хроматографии, масс-спектрометрии, спектрофотометрии и т.п.);

Термин «параллельные определения» употреблен без указания на то, какие именно операции должны быть повторены, а какие остаются общими;

Совпадают обозначения различных измеряемых величин;

Не расшифрованы обозначения величин, входящих в формулу для расчета результата анализа;

Отсутствуют требования к оформлению результата анализа.

7.6.4 В задачу эксперта не входит устранение грамматических ошибок и стилистических неточностей, присутствующих в документе на МКХА.

7.7 Оценивание правильности метрологических терминов

7.7.1 Метрологические термины должны соответствовать ГОСТ Р 1.12 и .

7.7.2 В документах на МКХА термины «анализируемый», «определяемый», «измеряемый», «контролируемый» часто употребляют как синонимы, что создает неопределенность в трактовках. При составлении заключений экспертам целесообразно пользоваться следующими устойчивыми словосочетаниями:

Анализируемая проба, анализируемое вещество (материал), объект анализа;

Определяемый компонент;

Измеряемая величина;

Контролируемый параметр, норматив контроля.

7.7.3 При регламентации МКХА, предусматривающих многократное проведение последовательности операций, возникает необходимость в применении двух терминов, один из которых распространяется на однократно проведенную последовательность операций, другой - на совокупность таких последовательностей. В таких случаях употребляют сочетания терминов: «наблюдение и измерение», «однократное измерение» и «двух (трех) кратное измерение», «однократное измерение» и «многократное измерение» (если число измерений равно четырем или более), «единичное определение» (или «определение») и «анализ» . Необходимо обращать внимание на то, чтобы в документе на МКХА было использовано только одно из указанных (либо аналогичных по смыслу) сочетаний терминов.

7.7.4 Эксперту следует учитывать, что химический анализ часто выступает как этап процедуры испытаний или контроля, в связи с чем в документе на МКХА могут быть использованы соответствующие термины. В частности, измеряемую величину можно трактовать как показатель качества продукции, а результат измерений (анализа) - как результат испытаний или значение показателя.

Форма журнала регистрации документов, поступивших на метрологическую экспертизу

Заявитель

Дата поступления документов

Перечень поступивших документов

Дата запроса дополнительных документов

Дата поступления дополнительных документов

Перечень поступивших дополнительных документов

Эксперты

Дата утверждения экспертного заключения

Форма запроса дополнительных документов

Руководителю ___________________________

предприятие-заявитель

ЗАПРОС

На основании результатов предварительной метрологической экспертизы _________

номер (индекс) и наименование документа (проекта документа), в котором регламентирована МКХА

предлагаю до ________________ направить в __________________________________

наименование ГНМЦ

следующие дополнительные документы: _______________________________________

________________________________________________________________________

Экспертиза проводится в соответствии с _______________________________________

номер и дата письма (договора)

Телефон для связи _____________________

Заместитель директора ГНМЦ __________________ ________________________

подпись расшифровка подписи

Форма экспертного заключения 1)

_________________________________________________________________________

__________________________________

организация, проводившая экспертизу

УТВЕРЖДАЮ

____________________________________

должность

___________ _____________________

подписьрасшифровка подписи

___________________

дата

ЗАКЛЮЧЕНИЕ

по результатам метрологической экспертизы методики количественного химического анализа 1) ,

регламентированной в _____________________________________________________,

номер (индекс) и наименование документа (проекта документа),

________________________________________________________________________

организация-разработчик, ее адрес

аттестованной 2) _________________________________________________________

организация, аттестовавшая методику, номер свидетельства

Экспертиза проведена на основании __________________________________________

номер письма (договора),

_________________________________________________________________________

организация, представившая МКХА на экспертизу

Дополнительные материалы, предоставленные эксперту: ________________________

техническое задание,

_________________________________________________________________________

свидетельство об аттестации, отчеты, протоколы и др.

Методика (не) предназначена для применения в сферах распространения государственного метрологического контроля и надзора.

Выводы о соответствии МКХА требованиям ГОСТ Р 8.563-96 «Государственная система обеспечения единства измерений. Методики выполнения измерений»:

а) Наименования измеряемых величин и обозначения их единиц (за исключением указанных в замечаниях № ________) соответствуют требованиям ГОСТ 8.417-81 «Государственная система обеспечения единства измерений. Единицы физических величин», ________________________________________________________________

_________________________________________________________________________

другие документы

б) Выбор средств измерений (за исключением указанных в замечаниях № ________ _) удовлетворяет условиям измерительной задачи и может быть признан рациональным.

Типы выбранных средств измерений, в том числе стандартных образцов ( _____), утверждены Госстандартом России 3) .

в) Диапазон измерений 4) (не ) соответствует требованиям __________________________

техническое задание,

______________________________________________ (см. также замечание № ___) 5) .

технические условия, стандарт и др.

г) Характеристики погрешности измерений (не ) соответствуют требованиям _________

____________________________________________ (см. также замечание № _____) 6) .

техническое задание, технические условия, стандарт и др.

д) Процедуры контроля точности измерений (не ) предусмотрены; нормативы контроля увязаны (не увязаны ) с характеристиками погрешности измерений (см. также замечание № _____).

е) Требования, правила и операции (за исключением указанных в замечаниях № _____) изложены с достаточной полнотой для получения результатов измерений, погрешность которых не превышает установленных границ 7).

ж) Метрологические термины (за исключением указанных в замечаниях № _____) соответствуют ГОСТ Р 1.12-99 «Государственная система стандартизации Российской Федерации. Стандартизация и смежные виды деятельности. Термины и определения» и «Государственная система обеспечения единства измерений. Метрология. Основные термины и определения».

и) ______________________________________________________________________

прочие оценки эксперта

Замечания

Эксперт (ы ):

________________________________________________________________________

должностьподписьрасшифровка подписи

__________

1 ) Вариант «Методики выполнения измерений».

3) Приводят только для МКХА, предназначенной для применения в сферах распространения государственного метрологического контроля и надзора.

4) Вариант: «диапазон значений измеряемой величины».

5) Вариант: «диапазон измерений не установлен».

6) Вариант: «характеристики погрешности измерений не установлены».

7) Вариант: «... установленных пределов».

Примеры структурных схем МКХА

ОП - отбор проб сплава; измеряют массы т 1 и т 2 , г.

П - подготовка проб: растворение при нагревании, охлаждение, разбавление.

И - потенциометрическое титрование серебра раствором хлористого натрия, V 1 и V 2 - объемы раствора, пошедшие на титрование, см 3 .

ВР -вычисление результатов определений; Т Na С l / Ag - титр раствора хлористого натрия по серебру, г/см 3 ; Х 1 и Х 2 - массовая доля серебра в пробах, %.

Контроль сходимости результатов определений и вычисление среднего значения массовой доли серебра в сплаве X c р (результат анализа).

Проба сплава.

Титруемый раствор.

Рисунок Г.1 - Структурная схема методики выполнения измерений массовой доли серебра в сплавах


ОП - отбор газовой пробы; при отборе измеряют параметры пробы: температуру Т , ° С; атмосферное давление р а , кПа; разрежение D р , кПа; время отбора t , мин; объемный расход Q , дм 3 /мин.

ПП - извлечение метанола из газовой пробы с помощью сорбционной трубки.

Э - экстракция метанола и измерение объема экстракта V э , см 3 .

И -ввод трех аликвот экстракта в испаритель хроматографа и получение аналитических сигналов S 1 , S 2 , S 3 .

Контроль сходимости аналитических сигналов и вычисление среднего значения S .

ПВ -предварительное вычисление; С м - массовая концентрация метанола в экстракте, мг/см 3 .

ВР - вычисление результата измерения; Х м - массовая концентрация метанола в газовой пробе при температуре 273 К и давлении 101,3 кПа, мг/м 3 .

ПГР-1 -приготовление градуировочного раствора 1 с массовой концентрацией метанола , мг/см 3 .

Линии (2), (3), (4) соответствуют градуировочным растворам 2, 3, 4.

Вычисление градуировочных коэффициентов для растворов 1-4, контроль сходимости коэффициентов и вычисление среднего К.

Газовая проба/

Сорбент с метанолом.

Экстракт и градуировочный раствор

Рисунок Г.2 - Структурная схема методики выполнения измерений массовой концентрации метанола в газовых выбросах хроматографическим методом

Рабинович С.Г. Погрешности измерений. - Л.: Энергия, 1978

Селиванов М.Н., Фридман А.Э., Кудряшова Ж.Ф. Качество измерений: Метр. справ. кн. - Л.: Лениздат, 1987

Чарыков А.К. Математическая обработка результатов химического анализа: Учебное пособие для вузов. - Л.: Химия, 1984

Семенко Н.Г., Панова В.И., Лахов В.М. Стандартные образцы в системе обеспечения единства измерений. - М.: Изд-во стандартов, 1990

Катеман Г., Пийперс Ф.В. Контроль качества химического анализа. - Челябинск.: Металлургия, 1989

Дёрфель К. Статистика в аналитической химии. - М.: Мир, 1994

Буйташ П., Кузьмин Н.М., Лейстнер Л. Обеспечение качества результатов химического анализа. - М.: Наука, 1993 РД 50-160-79 Внедрение и применение ГОСТ 8.417-81 «Государственная система обеспечения единства измерений. Единицы величин»

ОСТ 52.04.11-82 Атмосферный озон. Термины, буквенные обозначения и определения основных величин

РД 50-674-88 Методические указания. Метрологическое обеспечение количественного химического анализа. Основные положения

Чертов А.Г. Физические величины (Терминология, определения, обозначения, размерности, единицы). - М.: Высшая школа, 1990

Стоцкий Р.Л. Физические величины и единицы. Справочник. Книга для учителя. - М.: Просвещение, 1984

РД 52.04.59-85 Охрана природы. Атмосфера. Требования к точности контроля промышленных выбросов. Методические указания

МИ 1967-89 Государственная система обеспечения единства измерений. Выбор методов и средств измерений при разработке методик выполнения измерений

[ 22 ] МИ 2377-98 Рекомендация. Государственная система обеспечения единства измерений. Разработка и аттестация методик выполнения измерений

МИ 2590-2000 Государственная система обеспечения единства измерений. Эталонные материалы. Каталог 2000-2001

МИ 2334-95 Государственная система обеспечения единства измерений. Смеси аттестованные. Общие требования к разработке

МИ 1317-86 Государственная система обеспечения единства измерений. Результаты и характеристики погрешности измерений. Формы и способы представления. Способы использования при испытаниях образцов продукции и контроле их параметров

Довбета Л.И., Лячнев В.В., Сирая Т.Н. Основы теоретической метрологии: Учеб. пособие. - СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 1999

[ 27 ] МИ 2083-90 Рекомендация. Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

МИ 2232-2000 Государственная система обеспечения единства измерений. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности при ограниченной исходной информации

МИ 2175-91 Государственная система обеспечения единства измерений. Градуировочные характеристики средств измерений. Методы построения и оценивания погрешностей

МИ 2336-95 Государственная система обеспечения единства измерений. Характеристики погрешности результатов количественного химического анализа. Алгоритмы оценивания

МИ 2345-95 Государственная система обеспечения единства измерений. Характеристики градуировочные средств измерений состава и свойств веществ и материалов. Методика выполнения измерений с применением стандартных образцов

Количественное описание неопределенности в аналитических измерениях. Перевод документа EURACHEM . - СПб: Крисмас, 1997

[ 33 ] МИ 2552-99 Рекомендация. Государственная система обеспечения единства измерений. Применение «Руководства по выражению неопределенности измерений»

[ 34 ] МИ 2335-95 Рекомендация. Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа

ОСТ 41-08-262-86 Управление качеством аналитической работы. Внутрилабораторный контроль правильности результатов рядовых количественных анализов твердых негорючих полезных ископаемых и продуктов их переработки

РД 52.24.509-96 Методические указания. Порядок проведения работ по контролю качества гидрохимической информации

[ 37 ] МИ 1992-98 Рекомендация. Государственная система обеспечения единства измерений. Метрологическая аттестация стандартных образцов состава веществ и материалов по процедуре приготовления. Основные положения

Термины, определения и обозначения метрологических характеристик анализа вещества // Журнал аналитической химии. - 1975. - Т. 30. - Вып. 10. - С. 2059-2063

Ключевые слова: методика количественного химического анализа, метрологическая экспертиза, государственный научный метрологический центр, анализируемый объект, определяемый компонент, измеряемая величина, средство измерений, характеристика погрешности результата измерений

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

Глава 4. Количественный химический анализ

Титриметрический анализ

Количественный анализ вещества это экспериментальное определение (измерение) содержания химических элементов, соединений или их форм в анализируемом веществе, выраженное в численном виде. Цель количественного анализа – определение содержания (концентрации) компонентов в образце.Его можно осуществлять, используя различные методы: химические, физико-химические, физические, биологические.

Химические методы включают гравиметрические (весовые) и титриметрические или объемные виды анализа.

Гравиметрические методы основаны на точном измерении массы определяемого компонента, либо количественно связанного с ним соединения с точно известным составом.

Под титриметрическим анализом понимают определение содержания вещества по точно измеренному количеству реагента (массе или объему), вступившего в реакцию с определяемым компонентом в эквивалентном количестве.

Методы количественного химического анализа не требуют сложной аппаратуры, обладают хорошей точностью и воспроизводимостью. Так как погрешность многих титриметрических методов не превышает ± 0,5 ¸ 0,1%, а гравиметрических – не более 0,1%, то эти методы до сих пор используются в качестве метрологических при проведении аттестации методик анализа. Однако им присущ ряд недостатков. Наиболее существенными являются - недостаточная селективность и чувствительность, что требует тщательной подготовки пробы и применяемых реагентов.

Для проведения химического анализа используют реактивы следующих квалификаций: ч .(чистые), ч.д.а. – чистые для анализа; х.ч. – химически чистые; о.с.ч. – особо чистые. Наименьшее содержание примесей имеют реагенты марки о.с.ч. ич.д.а., тогда как реактивыквалификации х.ч .(чистые)и ниже не всегда пригодны для количественных определений и требуют дополнительной очистки.

Качество полученных результатов во многом определяется правильностью подбора посуды и оборудования. Для проведения количественного анализа используют самую разнообразную лабораторную посуду и весы. По назначению ее классифицируют на:

Ø посуду специального назначения – применяется для выполнения узкого круга операций. Это различного рода пикнометры, ареометры, холодильники, круглодонные колбы, колбы Кьельдаля ;

Ø посуду общего назначения – наиболее часто применяемая в самых разных видах работ: кипячении, титровании, фильтрации и т.д. Это пробирки, воронки, химические стаканы, плоскодонные круглые и конические колбы (Эрленмейера), кристаллизаторы, чашки Петри, бюксы, эксикаторы (рис. 4.1 и 4.2);

Рисунок 4.1 – лабораторная посуда общего назначения, применяемая в различных методах анализа.

Рисунок 4.2 – посуда общего назначения: а) стеклянные бюксы с крышками для взвешивания и хранения гигроскопичных веществ; б) различного вида промывалки для ополаскивания посуды.

Ø мерную посуда – служит для измерения объемов жидкости. Ее делят на посуду точного измерения : пипетки (Мора и градуированные), бюретки, мерные колбы Мора (рис.4.3) и неточную измерительную посуду : мерные цилиндры, мензурки, стаканы, колбы с делениями, градуированные пробирки: цилиндрические и конические или пальчиковые (рис. 4.4).

Рисунок 4.3 - посуда для точного измерения объема, применяемая при

отборе аликвот, приготовлении стандартных растворов и в титровании.

Рисунок 4.4 - Посуда для неточного измерения объема, применяемая

для приготовлении растворов подлежащих стандартизации и реагентов

в качественном анализе.

Для взятия аликвот в титриметрии, при количественном осаждении из растворов, а также при приготовлении стандартных растворов различного назначения используют всегда толькопосуду точного измерения и аналитические весы ! Посуду для неточного измерения объема и технохимические весы применяют: при приготовлении стандартизируемых растворов, измерении объемов растворов, применяемых для поддержании кислотности среды (буферов), проведения осаждения и титрования аликвот. При работе с мерной посудой, особенно точной , необходимо соблюдать ее чистоту. С этой целью посуду перед применением всегда ополаскиваютдистиллированной водой и сушат. Точную посуду сушат на воздухе с применением эфира или спирта, а неточную и общего назначения – на сушилках с обогревом или в сушильном шкафу. Для исключения ошибки при отборе аликвот и работе с бюретками, их дополнительно ополаскивают еще и измеряемым раствором.

Изменение температуры среды приводит к возникновению погрешности измерения: завышению или занижению определяемого объема, а значит и рассчитываемой концентрации. Поэтому, вся мерная посуда имеет штамп с указанием ее объема при 20ºС , а посуду точного измерения - дополнительно калибруют дистиллированной водой , используя аналитические весы и внося поправку на плотность воды при данной температуре. Иногда имеется дополнительная маркировка, указывающая на термостойкость и химическую устойчивость. Термостойкость стекла обозначается матовым квадратом или кругом . В такой посуде нагревают и кипятят жидкости на плитках и газовых горелках.

Весы. Устройства, применяемые для определения массы тел называют весами . В химическом анализе используют два вида весов: технические и аналитические. Они могут быть как механическими, так и электронными; иметь одну чашку (квадрантные механические и электронные) или две (чашечные и демпферные весы). Под взвешиванием понимают сравнение массы данного предмета с массой калиброванных грузов (разновесов) или же измерение давления, которое предмет оказывает на чашку весов в пересчете его на единицы массы . Разновесы необходимы при работе на демпферных иличашечных весах, а в квадрантных и электронных одночашечных весах шкалы уже проградуированы в единицах массы .

Весы различаются по классу точности и пределам измерения. Технические весы – наименее точные и применяются для взвешивания относительно больших по массе образцов. Для химических целей обычно используют квадрантные или чашечные технические весы на 0,2 – 1 кг (иногда до 5 кг). Точность их не превышает 0,01 – 20 г. Технические весы с точностью 0,1 – 0,01 г называют технохимическими и используют в лаборатории для взятия навесок от 1 до 500 г. В современных электронных технических весах точность измерений может быть и выше: при предельной массе предмета в 500 г, она варьирует от 0,001 г до 0,2 г.

Аналитические весы служат для точного определения массы навески при приготовлении стандартных растворов, проведении гравиметрических измерений и др. Точность демпферных весов составляет ± 2×10 - 4 - 2×10 - 5 г, а электронных - до 2×10 - 6 г. В среднем такие весы рассчитаны на предельную массу предмета 50 – 200 г, но выпускаются весы и повышенной точности на предельную массу навески 1 – 20 г, которые применяют в некоторых видах инструментального анализа, например в спектральном.

При работе на весах необходимо строго соблюдать правила обращения с ними. Из-за неправильной установки или небрежного обращения можно получить недостоверные результаты, а также вывести весы из строя. Особенно это важно помнить при использовании электронных и аналитических демпферных весов.

Индикаторы и их подбор

Для обнаружения точки эквивалентности в титриметрическом анализе применяют индикаторы (от лат. indicare – показывать, обнаруживать). Индикаторами называют реагенты, способные контрастно изменять свой цвет в зависимости от изменения свойств среды. Чаще всего – это органические вещества с обратимо изменяющейся окраской (исключение – осадительные индикаторы).

Далеко не любое вещество, изменяющее свою окраску в зависимости от свойств среды, пригодно в качестве индикатора титрования. Тем более, что индикаторы изменяют свой цвет независимо от того, достигнута или еще не достигнута точка эквивалентности: определяющим моментом являются лишь параметры среды. Поэтому важно правильно подобрать индикатор . К необходимым требованиям при подборе индикатора относятся следующие:

Ø показатель титрования рТ (интервал перехода окраски индикатора) должен находится в области скачка и быть как можно ближе к точке эквивалентности, а значение индикаторной ошибки не может превышать 0,5%;

Ø цвет индикатора - очень интенсивный и четко фиксируется в растворе визуально даже при сильном разбавлении (для 1 - 2 капель индикатора);

Ø чувствительность индикаторного вещества к изменению свойств среды – высокая, чтобы изменение окраски происходило при минимальном избытке титранта в растворе (от 1 – 2 капель титранта);

Ø интервал перехода - узкий и высококонтрастный;

Ø индикатор должен быть стабилен - не разлагаться на воздухе и в растворе;

Ø вещество индикатора - индифферентно по отношению к титруемому раствору или продуктами титрования, т. е. не должны протекать между ними реакции, влияющие на ход кривой титрования.

В зависимости от свойств, индикаторы классифицируют по числу переходов (одно и многопереходные) и по области применения . К однопереходным относится фенолфталеин (малиновый – бесцветный), а к многопереходным – метиловый оранжевый (желтый – оранжевый и оранжевый – розовый). Примерами других многопереходных индикаторов являются: a-Нафтолбензеин - два перехода: зеленый – желтый (рН = 0 – 1) и желтый – синий (рН = 8,4 – 10); Метиловый фиолетовый – три перехода (желтый – зеленый, зеленый – синий, синий – фиолетовый); Крезоловый красный – два перехода (красный – желтый и желтый – пурпурный). К многопереходным относятся также универсальные индикаторы. Иногда многопереходные индикаторы в титровании используются как однопереходные, если изменение цвета не всех переходов происходит в относительно узком диапазоне значений или же они фиксируются не четко.

По области применения различают следующие группы индикаторов:

1. Кислотно – основные.

2. Редокс – индикаторы (окислительно-восстановительнгые).

3. Металлохромные (комплексообразователи).

4. Осадительные.

5. Адсорбционные.

6. Специфические.

7. Смешанные.

8. Люминесцентные (флуоресцентные) и металлофлуоресцентные.

9. Экстракционные.

10. Экранирующие.

Это деление достаточно условно, так как в ходе титрования нередко закономерно изменяются одновременно несколько параметров, которые коррелируют между собой. Например, рН и потенциал системы Е, рН и значение ПР (произведения растворимости). Существует и более полная классификация индикаторов, учитывающая как их химическое строение, так и механизм изменения окраски, но такая классификация достаточно сложна и рассматриваться нами не будет.

Хромофорная теория (ХТ)

Изменение окраски индикатора по ХТ связано с обратимыми структурными процессами (изомеризацией), протекающими за счет внутримолекулярных перегруппировок отдельных функциональный групп в молекуле. Каждая из структурных форм (таутомеров ) устойчива только в определенном интервале значений рН или других параметров среды, поэтому присоединение или отщепление протона приводит к перестройке молекулы индикатора, в результате которой появляются новые или исчезают существовавшие раньше функциональные группы, ответственные за окраску (хромофоры). Эти особенности объясняют почему изменение окраски ряда индикаторов протекает не мгновенно, а растянуто во времени, поскольку таутомерные превращения – это внутримолекулярные перегруппировки, которые в отличие от ионных реакций (диссоциации) осуществляются медленнее.

Функциональные группы, отвечающие за окраску индикаторного вещества , получили название хромоморфных (хромо – цветной). К ним относятся: нитрогруппа (О = N –); азогруппа (– N = N –), несколько близко расположенных друг к другу карбонильных групп (>С=О).

Функциональные группы , усиливающие или стабилизирующие окраску индикатора, называются ауксохромными . Подобными свойствами обладают: аминогруппы (–NH 2) и производные аминов; кислород– и азот–содержащие соединения (–О–CH 3 ; –N(CH 3) 2 ; –N(C 2 H 5) 2), гидроксогруппы (электронодонорные). Окраска индикатора проявляется ярче, если вещество содержит кроме ауксохромных групп, еще и антиауксохромные (электрофильные) группы, обеспечивающие сдвиг электронной плотности в молекуле. Электрофильными свойствами обладают, например, некоторые кислородсодержащие радикалы (-NO 2 , -NO, -COCH 3). В качестве примера приведем структурные формулы таутомерных изомеров однопереходного индикатора п-нитрофенола (рис. 4.8)


Рисунок 4.8 – Структура таутомерных форм индикаторного вещества

(п-нитрофенола), содержащего хромофорную и ауксохромную группы.

Хромофорная теория также имеет ряд недостатков, в частности:

Ø не объясняет, почему изменение окраски и таутомерные превращения зависят от значения рН среды;

Ø каким образом окраска большинства индикаторов, имеющих хромофорные группы, изменяется практически мгновенно, что противоречит механизму внутримолекулярной перегруппировки;

Ø и, наконец, хромофорная теория не поддается количественному описанию.

Ионно-хромофорная теория.

Эта теория объединила представления ионной (диссоциативной) и хромофорной теорий. Согласно ионно-хромофорной теории , кислотно-основные индикаторы – слабые кислоты и основания, причем нейтральные молекулы и их ионизированные формы содержат разные хромофорные группы. В водном растворе молекула индикатора способна либо отдавать ионы водорода (слабая кислота), либо принимать их (слабое основание), подвергаясь при этом таутомерным превращениям согласно схеме:

HInd Û H + + Ind - Û H + + Ind - B ,

где HInd - неионизированная молекула индикатора (слабая кислота, таутомерная форма I) ; Ind - B - анион сильной кислоты, имеющей таутомерную форму II в диссоциированном состоянии (основная форма II).

При понижении рН (подкисление раствора) равновесие в системе смещается влево в сторону неионизированной формыHInd . Как только она начинает доминировать, раствор приобретает ее окраску.

Если раствор подщелачивать (рН увеличивается, а концентрация H + - убывает) – равновесие в системе смещается вправо и доминирующей формой становится Ind - B , которая и придает раствору иную окраску, характерную уже для основной формы II. Так кислая форма фенолфталеина (рН = 8,2) – бесцветна, а при переходе в щелочную среду – образуется анион таутомерной основной формы (рН = 10), окрашенный в красно-малиновый цвет. Между этими формами существует диапазон значений рН (от 8,2 до 10), соответствующих постепенному изменению окраски индикатора.

Глаз человека способен воспринимать окраску только одной из двух форм в смеси, при условии одинаковой интенсивности их цвета, если концентрация одной из этих форм примерно в 10 раз выше, чем второй.

Индикаторов.

1. Кислотно – основные индикаторы это слабые органические кислоты или основания. Окраска индикаторов обратима и определяется значением рН среды. Интервал перехода рассчитывается через константу диссоциации:

DрН инд. = – logК а ± 1 , где К а – константа диссоциации индикатора.

Рассмотрим пример. Константа диссоциации индикатора ализаринового желтого К а = 10 -11 . Определим интервал перехода индикатора DрН инд:

DрН инд. = – log (10 -11)± 1 =11 ±1 Þ DрН инд [(11-1) ¸ (11+1)] = .

Интервал перехода индикатора DрН инд = 10 ¸ 12.

2. Редокс – индикаторы – органические вещества, проявляющие свойства слабых окислителей или восстановителей. Могут быть как обратимыми (дифениламин), так и необратимыми, окраска которых разрушается (метиловый красный, метиловый оранжевый, они известны также как кислотно-основные индикаторы). Изменению окраски индикатора соответствует обратимая реакция: Ind + + ne Û Ind; гдеInd + - окисленная (Ox), а Ind - восстановленная (Red) формы индикатора, n - число электронов в данной полуреакции. Изменение редокс-потенциала (интервал перехода индикатора) рассчитывают по уравнению Нернста: DЕ = Е 0 ± 0,059/n ,

где Е 0 - стандартный редокс-потенциал для индикатора; n – число электронов в полуреакции.

Например: Редокс-индикатор дифениламин имеет Е 0 = + 0,76 В и n = 2. Определим интервал его перехода.

Согласно формуле: DЕ= 0,76 ± 0,059/2 = 0,76 ± 0,0295 Þ DЕ= (0,76 –0,0295) ¸ (0,76 + 0,295) = 0,73 ¸ 0,79 (В).

3. Металлохромные (металлоиндикаторы) - это органические красители (слабые кислоты), имеющие собственные хромофорные группы,и обратимо изменяющие свой цвет при образовании комплексной соли с катионами металлов. Используют их преимущественно в комплексонометрии, например, эриохром черный Т . Для этих индикаторов дополнительно должно выполняться условие: устойчивость комплекса титруемого вещества с титрантом выше, чем комплексов, образуемых им с индикатором в растворе. Интервал перехода вычисляют по формуле:

DрМе = – logК уст. ± 1 , где К уст - константа устойчивости комплекса, образованного данным индикатором с титруемым веществом.

4. Осадительные индикаторы .Группа индикаторов незначительна по составу, так как окрашенный осадок должен формироваться в растворе сразу же после практически полного осаждения определяемого вещества (остаточная концентрация менее 10 –6 моль/дм 3), а таких веществ немного.

Интервал перехода индикатора определяют по значению произведения растворимости (ПР), образованного им осадка: Dр(ПР) = – logПР. ± 1 .

Адсорбционные индикаторы -это органические вещества, проявляющие свойства слабых кислот или оснований, такие как эозин или флуоресцеин .

Механизм действия адсорбционного индикатора показан на схеме (рис. 4.9). Как видно из рисунка 4.9, появление окраски происходит в результате изменения состава ионов на поверхности дисперсной фазы (осадок или коллоидная частица) за счет процессов адсорбции или десорбции ионов индикатора. Это явление объясняется сменой знака электростатического заряда поверхности частиц осадка в ходе титрования. Причина ее в том, что в недотитрованном растворе поверхность осадка преимущественно сорбирует титруемые ионы, которые входят в его состав (осадок AgCl сорбирует неоттитрованные ионы Cl -) и приобретает их заряд. В результате этого сорбция ионов индикатора становится невозможной.

Рисунок 4.9 – Схематическое изображение структуры сорбированного слоя на поверхности осадка AgCl, образующегося при титровании ионов Cl - раствором AgNO 3 .

а – до точки эквивалентности (поверхностью сорбируются ионы Cl - , а ионы индикатора Ind - остаются в растворе);

б – после точки эквивалентности (поверхность сорбирует ионы титранта Ag + , которые притягивают ионы индикатора Ind -).

Как только будет достигнута точка эквивалентности, в растворе появится избыток противоположно заряженных ионов титранта , которые также начнут скапливаться вблизи поверхности осадка, притягивая из раствора ионы индикатора. Образующееся в результате этого вещество окрашивает поверхность осадка.

5. Специфические индикаторы Относительно малочисленная группа индикаторов, так как в основе их применения специфические реакции с титруемом веществом. Такими свойствами обладает раствор крахмала по отношению к молекулам J 2: образование соединения синего цвета.

Способы титрования.

Так как напрямую, реакцией с титрантом, можно анализировать далеко не любое вещество, особенно, если оно неустойчиво на воздухе, то для решения подобных задач было разработано несколько приемов (способов ) проведения анализа. Они позволяют заменять неустойчивые, в данных условиях соединения , на эквивалентное количество более устойчивого, которое не подвергается гидролизу или окислению. Известны следующие основные способы проведения титриметрического анализа :

Ø прямое титрование;

Ø реверсивное;

Ø обратное титрование или титрование по остатку;

Ø косвенное титрование или по замещению (по заместителю).

В таблице 4.1 показаны области применения различных способов в зависимости от вида титрования.

Таблица 4.1 – Применение различных видов и способов титрования.

название метода частное название метода; (рабочий раствор) вещества, определяемые титрованием
прямым обратным косвенным
Протолито-метрия Ацидиметрия (кислоты: HCl) основания; соли, образован-ные сильным основанием и слабой кислотой соли слабых оснований и сильных кислот; органические соединения -
Алкалиметрия (щелочи: NaOH) кислоты; соли, образован-ные слабым осно-ванием и сильной кислотой - -
Редокси-метрия Перманганато-метрия () восстановители окислители вещества, реагирующие с восстанови-телями
Иодометрия ( и ) восстановители восстановители окислители; кислоты
Комплексо-метрия Комплексоно- метрия (ЭДТА) катионы, образующие с ЭДТА комплексы катионы в водо-нерастворимых соединениях; катионы, для которых отсутствует индикатор катионы, образующие с ЭДТА более устойчивый комплекс, чем с
Метод Седимен-тации Аргентометрия () Анионы, образую-щие с осадок катионы, образующие малорастворимый осадок с ионами галогенов: , , ; , -

Рассмотрим подробнее суть различных способов титрования.

1. Прямое титрование заключается в непосредственном взаимодействии титранта и титруемого вещества. В процессе титрования к аликвоте или навеске вещества постепенно добавляют раствор титранта, объем которого точно фиксируют в Т. Э.В качестве титранта используют рабочий раствор известной концентрации. Расчет содержания вещества в образце выполняют по закону эквивалентов:

= (4.1)

где– количество моль-эквивалентов анализируемого вещества в титруемом образце; а - количество моль-эквивалентов титранта, вступившего в реакцию с определяемым компонентом А .

Концентрацию компонента А в растворе вычисляют по формуле:

(4.2)

где – молярная концентрация эквивалента (нормальность) титруемого раствора (определяемого компонента), моль-экв/л; – объем аликвоты титруемого раствора, мл; – концентрация и - объем титранта в точке эквивалентности. При титровании методом отдельных навесок формула (4.2) преобразуется в выражение (4.3):

(4.3)

Метод применяется во всех случаях, когда нет каких-либо ограничений. Например, при анализе кислот, определении жесткости воды.

2. Реверсивное титрование это разновидность прямого титрования, когда рабочий и титруемый растворы меняют местами. В этом случае для анализаотбирают аликвоты рабочего раствора, а в Т.Э. измеряютизрасходованный натитрование объем анализируемого раствора. Вычисления проводят также, как и в прямом титровании, по формулам (4.2) или (4.3). Метод позволяет ограничить площадь поверхности раствора, контактирующей с воздухом, при стандартизации относительно неустойчивых соединений, как например NaOH.

Титрование по заместителю (косвенное) и титрование по остатку(обратное) основаны на использовании вспомогательного раствора, взаимодействующего с определяемым компонентом. Такой прием позволяет выполнять анализ химически нестойких объектов или же при отсутствии подходящего индикатора.

В косвенном титровании сначала осуществляют реакцию определяемоговеществаА со вспомогательным растворомВ, а затемтитруют эквивалентное количество образовавшегося продукта реакции С (заместитель). Этот способ можно представить в виде схемы: А + В С + (т-т) , исходя из которой запишем выражение для закона эквивалентов:

= = . (4.4)

Из равенства (4.4) следует, что = и расчет можно также выполнять по формулам (4.2) и (4.3), используемых для прямого титрования. Для полноты реакции вспомогательный раствор всегда берут с небольшим избытком. Такой метод титрования реализуется в йодометрии.

Вобратном титровании также сначала протекает реакция между определяемымвеществомА ивзятым в избыткевспомогательным растворомВ, но затем титруют остаток не прореагировавшего вспомогательного раствора . Поэтому необходимо точно знать концентрацию вспомогательного раствора В и его объем , взятый для анализа. Определение компонента А выполняется согласно схеме: А + В В ост + (т-т). Исходя из условий титрования, закон эквивалентов можно записать в виде:

– = . (4.5)

Откуда имеем:

= - . (4.6)

Если все вещества взяты в виде растворов, то формула (4.6) примет вид

(4.7)

Если хотя бы одно из веществ взято в сухом виде (известна его масса), то следует воспользоваться выражением (4.6) и записать значение для каждого из веществ индивидуально.

И способы их приготовления.

В титриметрии используют растворы, концентрация которых установлена каким-либо способом с высокой степенью точности. Такие растворы называют стандартными титрованными или просто титрованными . Растворы классифицируют по назначению и по способу установления их концентрации.

По назначению их условно делят на рабочие растворы и растворы стандартов (первичные и вторичные).

Рабочими называют растворы, которые используются непосредственно в анализе при определении содержания вещества. Если рабочий раствор не относится к стандартным, то его необходимо отстандартизировать непосредственно перед выполнением анализа , так как концентрация в процессе хранения могла существенно измениться. Точную концентрацию рабочего раствора находят путем титрования стандартного раствора или установочных веществ (метод точных навесок) . Это касается, например, таких рабочих растворов, как: NaOH, Na 2 S 2 O 3 ×5H 2 O.

Под стандартным раствором понимают такой титрованный раствор, который устойчиво сохраняет свою концентрацию при длительном хранении. Основное назначениестандартных растворов - определение точной концентрации рабочих и иных растворов, применяемых в титровании.

Процесс установления точной концентрации раствора путем его титрования по стандарту называется стандартизацией .

По способу определения концентрации различают первичные стандарты и стандартизированные растворы .

Стандартизированные растворы - это такие растворы, концентрация которых устанавливается по стандарту и заранее не может быть точно определена. К ним относятся растворы кислот, щелочей, гидролизующихся и гигроскопичных солей, а также веществ, которые могут реагировать с атмосферным кислородом и углекислотой. Известно множествоспособовприготовления стандартизированных растворов. Наиболее часто для этой цели применяют: приготовление по приближенной навеске (щелочи, соли), методы разбавления или смешения растворов (кислоты, соли), методы ионного обмена (растворы солей).

Стандартные растворыклассифицируютпо способу определения их концентрации. Различают: первичные стандарты или растворы с приготовленным титром и вторичные стандарты - растворы с установленным титром.

Первичные стандарты - это растворы, которые готовят либо по точной навеске вещества (рис. 4.10), либо путем разведения специально приготовленных стандартизированных реагентов – фиксаналов (рис. 4.11). Фиксанал представляет собой стеклянную запаянную ампулу, выпускаемую промышленностью и содержащую строго нормированное количество реагента, обычно рассчитанного на 1 л 0,1 н. раствора.

Приготовление раствора по точной навеске начинают с расчета ее массы по заданной концентрации (титру или нормальности) и объему колбы. Навеску стандартного вещества взвешивают на аналитических весах с точностью до 1×10 -4 г и количественно переносят в мерную колбу, где ее растворяют при перемешивании (рис. 4.10).

Рисунок 4.10 – Порядок операций при приготовлении раствора первичного

стандарта по точной навеске: 1 – мерная колба Мора; 2 – воронка;

3 – бюкс с навеской вещества; 4 – промывалка с дистиллированной водой;

5 – пипетка или капельница.

а – перенос навески вещества в мерную колбу; б – ополаскивание воронки;

в – доведение объема раствора стандарта до метки.

Этим методом обычно готовят растворы солей, таких как бура (Na 2 B 4 O 7 ×10H 2 O), K 2 Cr 2 O 7 . Количество вещества в растворе находят или по значению точно взятой массы навески (при ее переносе необходимо тщательно промыть бюкс), или рассчитывают методом разности , определяя точную массу бюкса сначала с навеской, а затем – пустого , уже после переноса вещества в колбу. В случае необходимости - концентрацию раствора заново пересчитывают с учетом фактически взятой массы навески.

Порядок приготовления раствора методом разведения из фиксанала показан на рисунке 4.11. Чтобы стандарт, полученный этим методом, был качественным и отвечал всем требованиям, необходимо исключить потери вещества при вскрытии ампулы и переносе его в колбу, а также следить, чтобы осколки ампулы не попали в раствор. Это во многом зависит от правильности обращения с ампулой.

Рисунок 4.11 – Способ приготовления растворов первичного стандарта

методом разведения из фиксанала: 1 – мерная колба Мора на 1л;

2 – нижний боек; 3 – воронка; 4 – ампула фиксанала; 5 – верхний боек.

Перед использованием, ампулу следует ополоснуть дистиллированной водой и только затем ее вскрывать специальным бойком. Сразу же после переноса вещества в колбу, нужно тщательно промыть ампулу дистиллированной водой, не менее, чем 6-ти кратным ее объемом. Этот метод приготовления первичного стандарта проще, чем по точным навескам, но уступает ему в точности. Его используют не только для получения растворов солей, но и различных кислот.

Так как для приготовления раствора первичного стандарта пригодны только точная мерная посуда и аналитические весы , то и к веществам, применяемым для этой цели, предъявляют ряд обязательных требований . В качестве первичного стандарта можно использовать только такие реактивы, которые характеризуются:

Ø высокой чистотой (обычно не хуже, чем 99,99 – 99,999% - квалификации ч.д.а. и о.с.ч.);

Ø точным соответствием формульному составу и относительно высокой молекулярной массой ;

Ø устойчивостью при хранении как в твердом виде, так и в растворе (отсутствие процессов гидратации, гидролиза, окисления и карбонизации);

Ø простотой в приготовлении и хорошей растворимостью ;

Ø необратимостью реакции при стандартизации, селективностью ;

Ø возможностью точной фиксации Т. Э. каким-либо методом .

Вторичным стандартом называют такие стандартизированные растворы , которые устойчивы при хранении и могут быть использованы для стандартизации других растворов.

Вторичные стандарты готовят как растворы приблизительной концентрации любым известным методом, а перед употреблением - определяют их точную концентрацию путем стандартизациипо первичному стандарту . Поэтому при приготовлении вторичных стандартов не требуется высокая точность измерения массы вещества или объема раствора, как в случае первичных стандартов. Для этой цели вполне пригодны технохимические весы и неточная мерная посуда (цилиндры, мензурки, градуированные пробирки).

Примером раствора, обладающего свойствами вторичного стандарта , является соляная кислота . Ее разбавленные растворы могут храниться длительное время, до 1-го месяца и более, без заметного изменения концентрации. Бура , используемая в протолитометрии для стандартизации HCl, относится к первичным стандартам и готовится по точной навеске. Тогда, как рабочий раствор NaOH – свойствами стандарта не обладает вообще и его концентрацию приходится устанавливать заново при каждом использовании.

И их применение в анализе



Загрузка...