emou.ru

Наличие суперкомплексов в дыхательной цепи переноса электронов обеспечивается белком SCAFI. Дыхательная цепь Редуцированная цепь переноса электронов для янтарной кислоты

11.3.3.1. Переносчики электронов

Переносчики электронов размещены на поверхности или в глубине внутренней митохондриальной мембраны, которая уложена в кресты, число и плотность упаковки которых кооррелируют с энергетическими потребностями клетки.

Многие переносчики электронов – это белки, содержащие в качестве простетической группы гем.

Свойства молекулы гема зависят от белка, к которому он присоединен. Кроме того, гемы в разных цитохромах могут отличаться строением боковых групп и способом прикрепления к апобелку. Поэтому цитохромы могут отличаться редокс-потенциалами, хотя у них у всех простетические группы почти одинаковы.

Переносчики электронов называются цитохромами, так как они окрашены в красный цвет. Разные цитохромы обозначаются буквенными индексами: с 1 , с, а, а 3 – в порядке их расположения в цепи.

К другому типу негемовых железосодержащих переносчиков электронов относятся белки, в которых атомы железа связаны с сульфгидрильными группами остатков цистеина белка, а также с сульфгидрильными анионами остатков, образуя железо-серные комплексы, или центры (рис. 29).

Рис. 29. Строение железо-серного центра

Как и в цитохромах, атомы железа в таких центрах могут принимать и отдавать электроны, поочередно переходя в ферро(Fe 2+)- и ферри(Fe 3+)-состояния. Железо-серные центры функционируют совместно с флавинсодержащими ферментами, принимая электроны от сукцинатдегидрогеназы и дегидрогеназ, участвующих в окислении жиров.

Еще одним типом переносчиков является ФМН-содержащий белок. ФМН (флавинаденин-мононуклеотид) – соединение, которое представляет собой флавиновую половину молекулы ФАД. ФМН переносит электроны от ФАДН на железо-серные центры.

Все белковые переносчики – интегральные белки, занимающие в мембране строго фиксированное положение и ориентированные определенным образом. Исключение составляет цитохром с, который непрочно связан с внешней мембраной и легко покидает ее.

Единственный небелковый переносчик электронов – убихинон, названный так потому, что, с одной стороны, он – хинон, а с другой – встречается повсеместно (от англ. ubiquitious – вездесущий). Сокращенное его название CoQ, UQ или просто Q. Все железо-серные центры отдают электроны убихинону.

Убихинон при восстановлении приобретает не только электроны, но и протоны (рис. 30).

Рис.30. Убихинон – кофермент Q (а)
и его окислительно-восстановительные превращения (б)

При одноэлектронном восстановлении он превращается в семихинон (органически свободный радикал), а при двухэлекторонном – в гидрохинон. Именно промежуточное образование свободного радикала позволяет убихинону служить переносчиком не двух, а одного электрона. Очень длинный гидрофобный хвост (40 углеродных атомов в десяти последовательно соединенных изопреноидных остатках) придает убихинону способность легко внедряться и свободно перемещаться в неполярном слое внутренней митохондриальной мембраны.

11.3.3.2. Расположение переносчиков

Поток электронов между переносчиками направлен от переносчика с более высоким восстановительным потенциалом (т.е. меньшим редокс-потенциалом) к переносчику с более низким восстановительным потенциалом (т.е. более окисленному, с большим редокс-потенциалом) (рис. 31).

Рис.31. Редокс-потенциалы компонентов дыхательной цепи в митохондриях

В митохондриальной цепи переносчики обладают разными редокс-потенциалами.

Переносчики электронов в цепи расположены в цепи так, что DG 0 (свободная энергия) постепенно уменьшается, а редокс-потенциал, соответственно, возрастает. На каждом этапе передачи электрона соседнему по цепи переносчику высвобождается свободная энергия.

При окислении глюкозы происходит перенос электронов от НАДН и ФАДН 2 на кислород. В этом процессе участвуют много переносчиков, однако их можно сгруппировать в четыре комплекса, которые встроены в митохондриальную мембрану
(рис. 32).

Рис. 32. Четыре комплекса электронных переносчиков
в митохондриальной мембране

Между комплексами электроны перемещаются вместе с подвижными переносчиками: убихиноном и цитохромом с. Убихинон получает электроны от комплексов I и II и передает их комплексу III. Цитохром с служит посредником между комплексами III и IV. Комплекс I переносит электроны от НАДН на Q ; комплекс II – от сукцината через ФАДН 2 на Q; комплекс III использует QH 2 для восстановления цитохрома с, а комплекс IV передает электроны с цитохрома с на кислород. Комплексы I, III и IV называют соответственно НАДН-СоQ-редуктазой, СоQН 2 -цитохром с -редуктазой и цитохромоксидазой. Комплекс IV – цитохромоксидаза – состоит из нескольких белков. Он получает электроны от цитохрома с с внешней стороны внутренней митохондриальной мембраны. На пути к кислороду эти электроны проходят через цитохромы а и а 3 , содержащие атомы меди, которые поочередно переходят в состояния Cu + и Cu 2+ . Цитохромоксидаза осуществляет восстановление свободного кислорода:

О 2 + 4е - + 4Н + ® 2Н 2 О

11.3.3.3. Хемиосмотическая теория Митчелла

Транспорт электронов по дыхательной цепи приводит к генерации АТФ. Концепция механизма сопряжения транспорта электронов с синтезом АТФ была разработана английским биохимиком Питером Митчеллом в 1961 г. (в 1978 г. Митчеллу была присуждена Нобелевская премия). Митчелл обнаружил, что поток электронов вызывает выкачивание протонов из митохондрий в окружающую среду, создавая градиент протонов через мембрану (рН внешнего раствора уменьшается). Поскольку протоны являются положительно заряженными частицами, вследствие их выкачивания из митохондрий на мембране возникает разность электрического потенциала (минус - внутри) и разность рН (выше – внутри). В совокупности электрический и концентрационный градиенты составляют (по Митчеллу) протондвижущую силу, которая и является источником энергии для синтеза АТФ (рис. 33).

Рис. 33. Схема синтеза АТФ во внутренней
митохондриальной мембране

Протондвижущая сила приводит в действие АТФ-синтазные комплексы, использующие поток электронов для синтеза АТФ из АДФ и Ф. Комплексы представляют собой специализированные протонные каналы (грибовидные выросты, которыми покрыта внутренняя поверхность крист). Комплекс представлен двумя связанными между собой компонентами F 0 F 1 , каждый из которых состоит из нескольких белковых молекул. F 0 утоплен в мембране, а F 1 расположен на ее поверхности. Именно в F 1 синтезируется АТФ, тогда как F 0 выполняет функцию собственно протонного канала (рис. 34).

Рис 34. Схематическое изображение «грибовидной» структуры F 0 F 1 АТФ – синтетазы Е.coli. F 0 компонент пронизывает мембрану, образуя канал для протонов. Предполагается, что F 1 состоит из трех a и трех b субъединиц, организованных так, что они образуют гексамерную структуру наподобие «шляпки гриба», и одной g, одной d и одной e субъединиц, которые формируют «стержень», соединяющий F 0 с F 1 каналом

Неизвестно точно, как возникает АТФ при посредстве АТФ-синтетазы. Согласно одной из теорий, при транслокации протонов по F 0 -фактору, происходят конформационные изменения в F 1 -компоненте, который и синтезирует АТФ из АДФ и Ф.

Каждой паре электронов, перенесенных от НАДН на кислород, соответствует 10 протонов, перекаченных из митохондриального матрикса. Таким образом, окисление 1 молекулы НАДН приводит к синтезу 2,5 молекул АТФ, а окисление 1 молекулы ФАДН 2 – к синтезу 1,5 молекулы АТФ. Раньше полагали, что синтезируются соответственно, три и две молекулы АТФ. Эти величины принято называть отношениями Р/О, поскольку перенос 2 электронов эквивалентен восстановлению 1 атома кислорода.

Выход АТФ при окислении молекулы глюкозы до СО 2 и Н 2 О.

При гликолизе образуется 2 молекулы АТФ (продуцируется 4, но 2 расходуются). При гликолизе в цитоплазме образуется также 2 молекулы НАДН на 1 молекулу глюкозы. 2 молекулы АТФ образуются в цикле лимонной кислоты (из 1 молекулы глюкозы образуется 2 молекулы ацетил-КоА, запускающие два оборота цикла).

В расчете на 1 молекулу глюкозы пируватдегидрогеназа производит 2 молекулы НАДН, а цикл лимонной кислоты – 6 молекул НАДН. Их окисление приводит к синтезу 20 молекул АТФ. Еще три молекулы АТФ образуется за счет окисления ФАДН 2 при превращении сукцината в фумарат.

Суммарный выход молекул АТФ будет зависет от того, какой челночного механизм (глицерофосфатный и малатаспартатный) используется клетками для доставки НАДН к дыхательной цепи. При глицеролфосфатном механизме электроны от НАДН передаются на дигидрооксиацетонфосфат с образованием глицерол-3-фосфата, который переносит электроны на дыхательную цепь (рис.35). Это происходит при участии фермента глицерол-3-фосфатдегидрогеназы. В помошью цитоплазматического НАДН происходит восстановление митохондриального ФАД, являющегося простетической группой флавопротеина - глицерол-3-фосфатдегидрогеназы.

Рис. 35. Глицеролфосфатный челночный механизм

Другая челночная система - малат-аспартатная - переносит электроны от цитоплазматического НАДН к митохондриальному НАД + (рис. 36). Это приводит к образованию митохондриального НАДН, который далее окисляется в электроннотранспортной цепи. В цитоплазме НАДН восстанавливает оксалоацетат до малата. Последний с помощью переносчика попадает в митоходрии, где реокисляется в оксалоацетат с восстановлением НАД + . Сам оксалоацетат выйти из митохондрий не может, поэтому он сначала превращается в аспартат, который и транспортируется переносчиком в цитоплазму. В цитоплазме аспартат дезаминируется, превращаясь в оксалоацетат и замыкая тем самым челночный механизм.

Рис.36. Малат-аспартатная челночная система для переноса электронов

Это белковые комплексы и переносчики электронов, плавающие на внутренней мембране митохондрии, передающие друг другу по цепочке электроны и за счет этого вырабатывающие энергию. Дыхательных белковых комплексов четыре, и до сих пор толком неясно, как же они организованы на мембране: плавают ли независимо друг от друга или объединяются вместе, образуя так называемые суперкомплексы. Группа испанских исследователей обнаружила, что белок под названием SCAFI (supercomplex assembly factor I) специфически регулирует объединение дыхательных комплексов в суперкомплексы.

Несколько десятилетий назад, когда дыхательные белковые комплексы митохондрий были только выделены и исследованы, предполагалось, что они существуют в мембране независимо друг от друга и общаются только с помощью путешествующих между ними переносчиков электронов - убихинона и цитохрома c (рис. 1). Такое предположение получило название «жидкая модель» (fluid model). Однако постепенно появлялись свидетельства того, что дело обстоит не так просто и дыхательные комплексы, возможно, объединяются между собой в более крупные структуры - «суперкомплексы».

Например, обнаружилось, что комплекс I вообще нестабилен в отсутствие комплексов III или IV. И вот в 2000 году была высказана смелая гипотеза - ее назвали «цельная модель» (solid model), - согласно которой комплексы I, III и IV объединяются вместе в один гигантский суперкомплекс под названием респирасома (respirasome), в результате чего работают более слаженно (см. Hermann Schägger, Kathy Pfeiffer, 2000. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria). Из митохондрий сердечной мышцы быка были выделены искомые респирасомы, но, как и всегда в таких тонких молекулярных исследованиях, оставалась вероятность того, что это просто артефакт неправильно подобранной методики, и комплексы сцепляются вместе не в мембране митохондрии быка, а непосредственно в пробирке исследователя. В последующие годы делались многократные попытки доказать или опровергнуть существование респирасомы, но тщетно: неоспоримых аргументов ни за респирасому, ни против нее получено не было. Респирасомы и другие суперкомплексы прекрасно обнаруживались в митохондриях с помощью некоторых способов выделения белков, но по-прежнему было неясно, факт это или артефакт.

Авторы обсуждаемой работы решили подойти к проблеме с другой стороны. Если респирасомы (и другие суперкомплексы) - это не артефакт, то они, наверное, будут состоять не только из дыхательных комплексов как таковых, но и из каких-нибудь других, вспомогательных белков. И если эти вспомогательные белки идентифицировать, а потом «поиграть» с ними - например, выключить их или включить, - то можно получить косвенные доказательства (или, наоборот, опровержения) существования суперкомплексов, а также вообще понять, при каких условиях эти комплексы образуются и зачем нужны.

Поэтому исследователи вначале выделили из митохондрий суперкомплексы и дыхательные комплексы поодиночке (это было сделано с помощью синего нативного электрофореза (см. BN-PAGE) - одного из самых щадящих способов разделения белковых смесей), а затем проанализировали белки, из которых состоят суперкомплексы и «одинокие» дыхательные комплексы.

И выяснилось, что один белок (который носил невразумительное название Cox7a2l - cytochrome c oxidase subunit VIIa polypeptide 2-like) присутствует только в суперкомплексах, содержащих дыхательный комплекс IV (то есть в респирасоме и суперкомплексе III+IV), а в одиноких комплексах не встречается. Параллельно исследователям посчастливилось случайно обнаружить, что в трех мутантных линиях мышиных клеток с поврежденной (и, видимо, нежизнеспособной) формой этого белка суперкомплексы с участием комплекса IV в мембране митохондрий вообще не выявляются. При этом если в мутантные клетки вставить ген нормального белка, то эти суперкомплексы начинают в них образовываться. Из всего этого исследователи сделали закономерный вывод: данный белок помогает комплексу IV образовывать суперкомплексы и потому заслуживает того, чтобы быть переименованным в фактор объединения суперкомплексов I (supercomplex assembly factor I, или SCAFI) и быть исследованным подробнее.

Справедливости ради отметим, что идея про белки, стабилизирующие суперкомплексы, не нова: в прошлом году у дрожжей уже были обнаружены два белка, Rcf1 и Rcf2, которые также участвовали в образовании суперкомплексов (см.: V. Strogolova et al., 2012. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex).

Зачем же нужно образование суперкомплексов? Исследователи предложили элегантное объяснение этого явления (рис. 2).

Допустим, в мембране нет никаких суперкомплексов, а дыхательные комплексы работают поодиночке и независимо друг от друга. Тогда передача электронов производится по простому, имеющему всего одно разветвление маршруту: комплекс I переносит электроны с NADH на кофермент Q (назовем этот пул кофермента Q «CoQ NADH »), комплекс II - с сукцината на кофермент Q (этот пул кофермента Q мы назовем «CoQ FAD », поскольку окисление в комплексе II происходит с помощью кофактора FAD); после этого c обоих пулов кофермента Q электроны с помощью комплекса III передаются на цитохром c (то есть образуется только один большой пул цитохрома c, назовем его Cyt c both , потому что он относится к обоим потокам); и наконец, цитохром c, пойманный комплексом IV, переносит электроны на кислород. Иными словами, во всей системе существует только один пул комплексов IV - назовем его IV both .

Если же в мембране, помимо одиноких комплексов, плавают еще и суперкомплексы, то маршрут электронов сложнее и разветвленнее. Помимо вышеописанного пути по свободным комплексам, они также могут попасть в респирасому, где в конце концов отдельный пул комплекса IV (назовем его IV NADH) перенесет их с отдельного пула цитохрома c на кислород. Могут с помощью комплекса II попасть на суперкомплекс III+IV, откуда, опять же, отправятся на кислород (этот пул комплексов IV мы назовем IV FAD). Таким образом, у нас есть три пула комплексов IV - IV NADH , IV FAD и IV both .

В результате такого разделения система становится более гибкой, застрахованной от перенасыщения одним субстратом и конкуренции между субстратами и, наоборот, адаптированной под использование разных субстратов на оптимальных уровнях. Например, если «кормить» митохондрии исключительно сукцинатом (отправляющим электроны по FAD-пути), то в отсутствие суперкомплексов они будут обрабатывать его быстрей, чем в их присутствии. Однако если поместить эти митохондрии в среду, содержащую и сукцинат, и пируват+малат (отправляющие электроны по NADH-пути), то обработка сукцината в митохондриях, содержащих суперкомплексы, не изменится, а вот в митохондриях без суперкомплексов - существенно упадет (рис. 3).

Судя по всему, наличие суперкомплексов - это просто дополнительный и необязательный «бантик» в электронтранспортной цепи. Хотя суперкомплексы, видимо, и добавляют этой цепи эргономичности, но и в их отсутствие митохондрии (а также животные, в которых работают эти митохондрии) прекрасно себя чувствуют. Обсуждаемая же работа, во-первых, предоставляет генетическое свидетельство наличия суперкомплексов, а во-вторых, предлагает элегантную теорию пластичности электронтранспортной цепи.

Где наводят протонный потенциал . Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ . Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования .

В митохондриях эукариот цепь переноса электронов начинается с окисления НАДН и восстановления убихинона Q комплексом I. Далее комплекс II окисляет сукцинат до фумарата и восстанавливает убихинон Q . Убихинон Q окисляется и восстанавливается цитохром с комплексом III. В конце цепи комплекс IV катализирует перенос электронов с цитохрома с на кислород с образованием воды . В результате реакции, на каждые условно выделившиеся 6 протонов и 6 электронов выделяются 2 молекулы воды за счёт траты 1 молекулы О 2 и 10 молекул НАД∙Н.

Комплекс I или НАДН-дегидрогеназный комплекс окисляет НАД-Н . Этот комплекс играет центральную роль в процессах клеточного дыхания и. Почти 40 % протонного градиента , для синтеза АТФ , создаются именно этим комплексом . Комплекс I окисляет НАДН и восстанавливает одну молекулу убихинона , которая высвобождается в мембрану. На каждую окисленную молекулу НАДН комплекс переносит через мембрану четыре протона . НАДН-дегидрогеназный комплекс отбирает у него два электрона и переносит их на убихинон . Убихинон растворим в липидах . Убихинон внутри мембраны диффундирует к комплексу III. Вместе с этим, комплекс I перекачивает 2 протона и 2 электрона из матрикса в митохондрии .

Электрон-транспортная цепь комплекса I. Серые стрелочки - маловероятный или ныне не существующий путь переноса

Кластер N5 имеет очень низкий потенциал и лимитирует скорость общего потока электронов по всей цепи. Вместо обычных для железосерных центров лигандов (четырёх остатков цистеина) он скоординирован тремя остатками цистеина и одним остатком гистидина , а также окружён заряженными полярными остатками, хотя и находится в глубине фермента .

Кластер N7 присутствует только в комплексе I некоторых бактерий. Он значительно удалён от остальных кластеров и не может обмениваться с ними электронами, так что по-видимому, является реликтом . В некоторых бактериальных комплексах, родственных комплексу I, между N7 и остальными кластерами обнаружены четыре консервативных остатка цистеина, а комплексе I бактерии Aquifex aeolicus был обнаружен дополнительный Fe 4 S 4 кластер, соединяющий N7 с остальными кластерами. Из этого следует вывод, что у A. aeolicus комплекс I, кроме НАДН, может использовать иной донор электронов, который передаёт их через N7 .

НАДН-дегидрогеназный комплекс окисляет НАДН, образовавшийся в матриксе в ходе цикла трикарбоновых кислот . Электроны от НАДН используются для восстановления мембранного переносчика, убихинона Q, который переносит их к следующему комплексу электрон-транспортной цепи митохондрий, комплексу III или цитохром-bc 1 -комплексу .

НАДН-дегидрогеназный комплекс работает как протонная помпа : на каждый окисленный НАДН и восстановленный Q через мембрану в межмембранное пространство перекачиваются четыре протона :

Образовавшийся в ходе реакции электрохимический потенциал используется для синтеза АТФ . Реакция, катализируемая комплексом I, обратима, этот процесс называется аэробное сукцинат -индуцированное восстановление НАД + . В условиях большого потенциала на мембране и избытка восстановленных убихинолов комплекс может восстанавливать НАД + с использованием их электронов и пропускать протоны обратно в матрикс. Этот феномен обычно наблюдается, когда много сукцината, но мало оксалоацетата или малата . Восстановление убихинона осуществляется ферментами сукцинатдегидрогеназой , или митохондриальной. В условиях высокого протонного градиента сродство комплекса к убихинолу повышается, а редокс-потенциал убихинола снижается благодаря росту его концентрации, что и делает возможным обратный транспорт электронов по электрическому потенциалу внутренней мембраны митохондрий к НАД . Данный феномен удалось наблюдать в лабораторных условиях, но неизвестно, имеет ли он место в живой клетке.

На начальных этапах исследования комплекса I широко обсуждалась модель, основанная на предположении, что в комплексе оперирует система, похожая на. Однако позднейшие исследования не обнаружили в комплексе I каких-либо внутренне связанных хинонов и полностью опровергли эту гипотезу .

НАДН-дегидрогеназный комплекс, по-видимому, имеет уникальный механизм транспорта протонов посредством конформационных изменений самого фермента. Субъединицы ND2, ND4 и ND5 называются антипорт -подобными, поскольку они гомологичны друг другу и бактериальным Mrp Na + /H + антипортам. Эти три субъединицы образуют три основных протонных канала, которые состоят из консервативных остатков заряженных аминокислот (в основном лизина и глутамата). Четвёртый протонный канал образован частью субъединицы Nqo8 и малыми субъединицами ND6, ND4L и ND3. Канал сходен по строению с аналогичными каналами антипорт-подобных субъединиц, но содержит необычно много плотно упакованных остатков глутамата со стороны матрикса, за что и получил название E-канал (латинское E используется как стандартное обозначение глутамата). От С-конца субъединицы ND5 отходит удлинение, состоящее из двух трансмембранных спиралей, соединённых необычно протяжённой (110 Å) α-спиралью (HL), которая, проходя по стороне комплекса, обращённой в матрикс, физически соединяет все три антипорт-подобные субъединицы, и возможно, участвует в сопряжении транспорта электронов с конформационной перестройкой. Ещё один сопрягающий элемент, βH, образован серией перекрывающихся и α-спиралей, он расположен на противоположной, периплазматической стороне комплекса . До сих пор окончательно неизвестно, как именно транспорт электронов сопряжён с переносом протонов. Полагают, что мощный отрицательный заряд кластера N2 может расталкивать окружающие полипептиды, вызывая тем конформационные изменения, которые неким образом распространяются на все антипорт-подобные субъединицы, расположенные довольно далеко друг от друга. Другая гипотеза предполагает, что изменение конформации вызывает в необычно длинном сайте связывания убихинона стабилизированный убихинол Q −2 с крайне низким редокс-потенциалом и отрицательным зарядом. Неизвестными остаются и многие детали кинетики конформационных изменений и сопряжённого с ними транспорта протонов .

Наиболее изученный ингибитор комплекса I - ротенон (широко применяемый как органический пестицид). Ротенон и ротеноиды - это изофлавоноиды , которые присутствуют в корнях нескольких родов тропических растениях таких как Антония (Loganiaceae ), Derris и Lonchocarpus (Fabaceae ). Ротенон давно используется как инсектицид и рыбный яд, так как митохондрии насекомых и рыб особенно к нему чувствительны. Известно, что коренные жители Французской Гвианы и другие индейцы Южной Америки использовали ротенон-содержащие растения для рыболовства уже в XVII веке . Ротенон взаимодействует с сайтом связывания убихинона и конкурирует с основным субстратом. Было показано, что долгосрочное системное подавление комплекса I ротеноном может индуцировать селективное отмирание дофаминергических нейронов (секретирующих в качестве нейротрансмиттера дофамин) . Схожим образом действует и пиерицидин А , ещё один мощный ингибитор комплекса I, структурно схожий с убихиноном. К этой же группе относится и амитал натрия - производное барбитуровой кислоты .

Несмотря на более чем 50-летнее изучение комплекса I, так и не удалось обнаружить ингибиторы, блокирующие перенос электронов внутри комплекса. Гидрофобные ингибиторы, такие как ротенон или пиерицидин, просто прерывают перенос электрона с терминального кластера N2 на убихинон .

Ещё одно вещество, блокирующее комплекс I - это аденозиндифосфатрибоза , в реакции окисления НАДН. Он связывается с ферментом в сайте связывания нуклеотида (ФАД) .

К одним из самых сильных ингибиторов комплекса I относится семейство ацетогенинов . Показано, что эти вещества образуют химические сшивки с субъединицей ND2, что косвенно указывает на роль ND2 в связывании убихинона . Любопытно отметить, что ацетогенин роллиниастатин-2 стал первым из обнаруженных ингибиторов комплекса I, который связывается в другом месте, нежели ротенон .

Умеренным ингибиторным эффектом обладает антидиабетический препарат метформин ; по-видимому, данное свойство препарата лежит в основе механизма его действия .

Электроны от сукцината сначала переносятся на ФАД, а затем через Fe-S кластеры на Q. Электронный транспорт в комплексе не сопровождается генерацией протонного градиента . Образовавшиеся при окислении сукцината 2H + остаются на той же стороне мембраны, то есть в матриксе , и затем снова поглощаются при восстановлении хинона. Таким образом комплекс II не вносит вклада в создание протонного градиента на мембране и работает только как переносчик электронов от сукцината к убихинону .

В результате окисления сукцината его электроны переносятся на ФАД , а затем передаются по цепи из железосерных кластеров от кластера к . Там эти электроны переносятся на ожидающую в сайте связывания молекулу убихинона .

Так же есть предположение, что для того что бы не давать электрону напрямую попадать с кластера на гем действует специальный воротный механизм. Вероятный кандидат на роль ворот - гистидин -207 субъединицы B, который расположен прямо между железосерным кластером и гемом, неподалёку от связанного убихинона, вероятно, он может управлять потоком электронов между этими редокс-центрами .

Существует два класса ингибиторов комплекса II: одни блокируют карман для связывания сукцината, а другие - карман для связывания убихинола . К ингибиторам, имитирующем убихинол, относятся карбоксин и теноилтрифторацетон . К ингибиторам-аналогам сукцината принадлежит синтетическое соединение малонат а также компоненты цикла Кребса , малат и оксалоацетат . Интересно, что оксалоацетат является одним из самых сильных ингибиторов комплекса II. По какой причине обычный метаболит цикла трикарбоновых кислот ингибирует комплекс II остаётся не ясным, хотя предполагают, что таким образом он может выполнять защитную роль, сводя к минимуму обратный транспорт электронов в комплексе I , в результате которого происходит образование супероксида .

Ингибиторы, имитирующие убихинол, использовались как фунгициды в сельском хозяйстве начиная с 1960-х годов. Например, карбоксин в основном использовался для заболеваний вызванных базидиомицетами , такими как стеблевы ржавчины и заболевания вызванные Rhizoctonia . В последнее время им на смену пришли другие соединения с более широким спектром подавляемых патогенов. К таким соединениям относятся боскалид , пентиопирад и флуопирам . Некоторые сельскохозяйственно значимые грибы не восприимчивы к действию этого нового поколения ингибиторов .

Цитохро́м-bс1-ко́мплекс (комплекс цитохромов bc 1) или убихинол-цитохром с-оксидоредуктаза, или комплекс III - мультибелковый комплекс дыхательной цепи переноса электронов и важнейший биохимический генератор протонного градиента на мембране митохондрий. Этот мультибелковый трансмембранный комплекс кодируется митохондриальным (цитохром b ) и ядерным геномами .

Цитохром- 1 -комплекс окисляет восстановленный убихинон и восстанавливает цитохром c (Е°"=+0,25 В) согласно уравнению:

Электронный транспорт в комплексе сопряжен с переносом протонов из матрикса (in) в межмембранное пространство (out) и генерацией на мембране митохондрий протонного градиента. На каждые два электрона , проходящие по цепи переноса от убихинона до цитохрома с , два протона поглощается из матрикса, и ещё четыре высвобождаются в межмембранное пространство. Восстановленный цитохром c движется вдоль мембраны в водной фракции и переносит один электрон к следующему дыхательному комплексу - цитохромоксидазе .

События, которые при этом происходят, известны как Q-цикл, который был постулирован Питером Митчеллом в 1976 году. Принцип Q-цикла состоит в том, что перенос Н + через мембрану происходит в результате окисления и восстановления хинонов на самом комплексе. При этом хиноны соответственно отдают и забирают 2Н + из водной фазы избирательно с разных сторон мембраны.

В структуре комплекса III есть два центра, или два «кармана», в которых могут связываться хиноны. Один из них, Q out -центр, расположен между железосерным кластером 2Fe-2S и гемом b L вблизи внешней (out) стороны мембраны, обращённой в межмембранное пространство. В этом кармане связывается восстановленный убихинон (QH 2). Другой, Q in -карман, предназначен для связывания окисленного убихинона (Q) и расположен вблизи внутренней (in) стороны мембраны, контактирующей с матриксом.

Необходимым и парадоксальным условием работы Q-цикла является тот факт, что время жизни и состояние семихинонов в двух центрах связывания разное. В Q out -центре Q нестабилен и действует как сильный восстановитель, способный отдать е - на низкопотенциальный гем by. В Q in -центре образуется относительно долгоживущий Q − , потенциал которого позволяет ему действовать в качестве окислителя, принимая электроны с гема b H . Ещё один ключевой момент Q-цикла связан с расхождением двух электронов , входящих в комплекс, по двум разным путям. Изучение кристаллической структуры комплекса показало, что позиция 2Fe-2S-центра относительно других редокс-центров может смещаться. Оказалось, что белок Риске имеет подвижный домен , на котором собственно и расположен 2Fe-2S кластер. Принимая электрон и восстанавливаясь, 2Fe-2S центр меняет своё положение, отдаляясь от Q out -центра и гем b L на 17 с поворотом на 60° и тем самым приближаясь к к цитохрому c . Отдав электрон цитохрому, 2Fe-2S центр, наоборот, сближается с Q out -центром для установления более тесного контакта. Таким образом, функционирует своеобразный челнок (шаттл), гарантирующий уход второго электрона на гемы b L и b H . Пока это единственный пример, когда электронный транспорт в комплексах связан с подвижным доменом в структуре белка .

Небольшая часть электронов покидает цепь переноса до того как достигнет Комплекса IV . Постоянные утечки электронов на кислород приводят к образованию супероксида . Эта небольшая побочная реакция приводит к образованию целого спектра активных форм кислорода , которые весьма токсичны и играют значительную роль в развитии патологий и старения) . Электронные протечки в основном происходят в Q in -сайте. Этому процессу способствует антимицин A . Он блокирует гемы b в их восстановленном состоянии не давая им сбросить электроны на семихинон Q , что в свою очередь приводит к повышению его концентрации. Семихинон реагирует к кислородом , что и приводит к образованию супероксида . Образовавшийся супероксид поступает в митохондриальный матрикс и межмембранное пространство, откуда он может попасть в цитозоль. Этот факт можно объянить тем, что Комплекс III, возможно, производит супероксид в форме незаряженного HOO , которому легче проникнуть сквозь внешнюю мембрану по сравнению с заряженным Супероксидом (O 2 -) .

Некоторые из этих веществ используются как фунгициды (например, производные стробилурина , наиболее известным из которых является азоксистробин , ингибитор сайта Q внеш) и противомалярийные препараты (атовакуон) .

Цитохром с оксида́за (цитохромоксидаза) или цитохром с-кислород-оксидоредуктаза, также известная как цитохром aa 3 и комплекс IV - терминальная оксидаза аэробной дыхательной цепи переноса электронов, которая катализирует перенос электронов с цитохрома с на кислород с образованием воды . Цитохромоксидаза присутствует во внутренней мембране митохондрий всех эукариот , где её принято называть комплекс IV, а также в клеточной мембране многих аэробных бактерий .

Комплекс IV последовательно окисляет четыре молекулы цитохрома с и, принимая четыре электрона, восстанавливает O 2 до H 2 O. При восстановлении O 2 четыре H + захватываются из

У эукариот - на внутренней мембране митохондрий . Переносчики расположены по своему окислительно-восстановительному потенциалу , транспорт электрона на всём протяжении цепи протекает самопроизвольно.

Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ . Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования .

Цепь переноса электронов митохондрий

  • Комплекс I (НАДН-дегидрогеназный комплекс) окисляет НАД-Н , отбирая у него два электрона и перенося их на растворимый в липидах убихинон , который внутри мембраны диффундирует к комплексу III. Вместе с этим, комплекс I перекачивает 2 протона и 2 электрона из матрикса в межмембранное пространство митохондрии .
  • Комплекс II (Сукцинатдегидрогеназа) не перекачивает протоны , но обеспечивает вход в цепь дополнительных электронов за счёт окисления сукцината .
  • Комплекс III (Цитохром-bc 1 -комплекс) переносит электроны с убихинона на два водорастворимых цитохрома с , расположенных на внутренней мембране митохондрии . Убихинон передаёт 2 электрона , а цитохромы за один цикл переносят по одному электрону . При этом туда также переходят 2 протона убихинона и перекачиваются комплексом.
  • Комплекс IV (Цитохром c оксидаза) катализирует перенос 4 электронов с 4 молекул цитохрома на O 2 и перекачивает при этом 4 протона в межмембранное пространство. Комплекс состоит из цитохромов a и a3, которые, помимо гема , содержат ионы меди .

Влияние окислительного потенциала

Восстановитель Окислитель Ео´, В
Н2 2 + - 0,42
НАД Н + Н+ НАД + - 0,32
НАДФ Н + Н+ НАДФ + - 0,32
Флавопротеин (восстановл.) Флавопротеин (окисл.) - 0,12
Кофермент Q Н2 Кофермент Q + 0,04
Цитохром B (Fe2+) Цитохром B (Fe3+) + 0,07
Цитохром C 1 (Fe2+) Цитохром C 1 (Fe3+) + 0,23
Цитохромы A (Fe2+) Цитохромы A(Fe3+) + 0,29
Цитохромы A3 (Fe2+) Цитохромы A3 (Fe3+) +0,55
H2O ½ О2 + 0,82

Ингибиторы дыхательной цепи

Некоторые вещества блокируют перенос электронов через комплексы I, II, III, IV .

  • Ингибиторы I комплекса - барбитураты , ротенон , пиерицидин
  • Ингибитор II комплекса - малонат .
  • Ингибитор III комплекса - антимицин А , миксотиазол , стигматтелин
  • Ингибиторы IV комплекса - сероводород , цианиды , угарный газ , оксид азота, азид натрия

Электронтранспортные цепи бактерий

Бактерии, в отличие от митохондрий, используют большой набор доноров и акцепторов электронов, а также разные пути переноса электрона между ними. Эти пути могут осуществляться одновременно, например, E. coli при выращивании на среде, содержащей глюкозу в качестве основного источника органического вещества, использует две НАДН дегидрогеназы и две хинолоксидазы, что означает наличие 4 путей транспорта электрона. Большинство ферментов ЭТЦ индуцибельны и синтезируются только в случае, если путь, в который они входят, востребован.

Донором электрона помимо органического вещества у бактерий могут выступать молекулярный водород , угарный газ , аммоний , нитрит , сера , сульфид , двухвалентное железо . Вместо НАДН и сукцинатдегидрогеназы могут присутствовать формиат -, лактат -, глицеральдегид-3-фосфатдегидрогеназа, гидрогеназа и т. д. Вместо оксидазы, использующейся в аэробных условиях, в отсутствие кислорода бактерии могут использовать редуктазы, восстанавливающие различные конечные акцепторы электрона: фумаратредуктазу , нитрат- и нитритредуктазу и т. д.

См. также

Напишите отзыв о статье "Дыхательная цепь переноса электронов"

Примечания

Отрывок, характеризующий Дыхательная цепь переноса электронов

Наконец-то всё вокруг пришло в движение, и вся эта великолепно разодетая толпа, как по мановению волшебной палочки, разделилась на две части, образуя ровно посередине очень широкий, «бальный» проход. А по этому проходу медленно двигалась совершенно потрясающая женщина... Вернее, двигалась пара, но мужчина рядом с ней был таким простодушным и невзрачным, что, несмотря на его великолепную одежду, весь его облик просто стушёвывался рядом с его потрясающей партнёршей.
Красавица дама была похожа на весну – её голубое платье было сплошь вышито причудливыми райскими птицами и изумительными, серебристо-розовыми цветами, а целые гирлянды настоящих живых цветов хрупким розовым облачком покоились на её шелковистых, замысловато уложенных, пепельных волосах. Множество ниток нежного жемчуга обвивали её длинную шею, и буквально светились, оттенённые необычайной белизной её изумительной кожи. Огромные сверкающие голубые глаза приветливо смотрели на окружающих её людей. Она счастливо улыбалась и была потрясающе красивой....

Французская королева Мария-Антуанетта

Тут же, стоящий от всех в стороне, Аксель буквально преобразился!.. Скучающий молодой человек куда-то, в мгновение ока, исчез, а вместо него... стояло живое воплощение самых прекрасных на земле чувств, которое пылающим взглядом буквально «пожирало» приближающуюся к нему красавицу даму...
– О-о-ой... какая же она краси-ивая!.. – восторженно выдохнула Стелла. – Она всегда такая красивая!..
– А что, ты её видела много раз? – заинтересованно спросила я.
– О да! Я хожу смотреть на неё очень часто. Она, как весна, правда же?
– И ты её знаешь?.. Знаешь, кто она?
– Конечно же!.. Она очень несчастная королева, – чуть погрустнела малышка.
– Почему же несчастная? По мне так очень даже счастливая, – удивилась я.
– Это только сейчас... А потом она умрёт... Очень страшно умрёт – ей отрубят голову... Но это я смотреть не люблю, – печально прошептала Стелла.
Тем временем красавица дама поравнялась с нашим молодым Акселем и, увидев его, от неожиданности на мгновение застыла, а потом, очаровательно покраснев, очень мило ему улыбнулась. Почему-то у меня было такое впечатление, что вокруг этих двоих людей мир на мгновение застыл... Как будто на какой-то очень короткий миг для них не существовало ничего и никого вокруг, кроме них двоих... Но вот дама двинулась дальше, и волшебный миг распался на тысячи коротеньких мгновений, которые сплелись между этими двумя людьми в крепкую сверкающую нить, чтобы не отпускать их уже никогда...
Аксель стоял совершенно оглушённый и, опять никого не замечая вокруг, провожал взглядом свою прекрасную даму, а его покорённое сердце медленно уходило вместе с ней... Он не замечал, какими взглядами смотрели на него проходящие молодые красавицы, и не отвечал на их сияющие, зовущие улыбки.

Граф Аксель Ферсен Мария-Антуанетта

Человеком Аксель и в правду был, как говорится, «и внутри, и снаружи» очень привлекательным. Он был высоким и изящным, с огромными серьёзными серыми глазами, всегда любезным, сдержанным и скромным, чем одинаково привлекал, как женщин, так и мужчин. Его правильное, серьёзное лицо редко озарялось улыбкой, но если уж это случалось, то в такой момент Аксель становился просто неотразим... Поэтому, было совершенно естественным усиленное к нему внимание очаровательной женской половины, но, к их общему сожалению, Акселя интересовало только лишь одно на всём белом свете существо – его неотразимая, прекрасная королева...
– А они будут вместе? – не выдержала я. – Они оба такие красивые!..
Стелла только грустно улыбнулась, и сразу же «окунула» нас в следующий «эпизод» этой необычной, и чем-то очень трогательной истории...
Мы очутились в очень уютном, благоухающем цветами, маленьком летнем саду. Вокруг, сколько охватывал взгляд, зеленел великолепно ухоженный, украшенный множеством статуй, роскошный парк, а вдалеке виднелся ошеломляюще огромный, похожий на маленький город, каменный дворец. И среди всего этого «грандиозного», немного давящего, окружающего величия, лишь этот, полностью защищённый от постороннего взгляда сад, создавал ощущение настоящего уюта и какой-то тёплой, «домашней» красоты...
Усиленные теплом летнего вечера, в воздухе витали головокружительно-сладкие запахи цветущих акаций, роз и чего-то ещё, что я никак не могла определить. Над чистой поверхностью маленького пруда, как в зеркале, отражались огромные чашечки нежно-розовых водяных лилий, и снежно-белые «шубы» ленивых, уже готовых ко сну, царственных лебедей. По маленькой, узенькой тропинке, вокруг пруда гуляла красивая молодая пара. Где-то вдали слышалась музыка, колокольчиками переливался весёлый женский смех, звучали радостные голоса множества людей, и только для этих двоих мир остановился именно здесь, в этом маленьком уголке земли, где в этот миг только для них звучали нежные голоса птиц; только для них шелестел в лепестках роз шаловливый, лёгкий ветерок; и только для них на какой-то миг услужливо остановилось время, давая возможность им побыть вдвоём – просто мужчиной и женщиной, которые пришли сюда, чтобы проститься, даже не зная, не будет ли это навсегда...
Дама была прелестной и какой-то «воздушной» в своём скромном, белом, вышитом мелкими зелёными цветочками, летнем платье. Её чудесные пепельные волосы были схвачены сзади зелёной лентой, что делало её похожей на прелестную лесную фею. Она выглядела настолько юной, чистой и скромной, что я не сразу узнала в ней ту величественную и блистательную красавицу королеву, которую видела всего лишь несколько минут назад во всей её великолепной «парадной» красоте.

Система структурно и функционально связанных трансмембранных белков и переносчиков электронов. Она позволяет запасти энергию, выделяющуюся в ходе окисления NAD*H и ФАДН2 молекулярным кислородом в форме трансмембранного протонного потенциала за счёт последовательного переноса электрона по цепи,сопряжённого с перекачкой протонов через мембрану. Транспортная цепь у эукариот локализована на внутренней мембране митохондрий. В дыхат.цепи 4 мультиферментных комплекса. Также существует еще один комплекс, участвующий не в переносе электронов, а синтезирующий АТФ.

1ый- КоА-оксидоредуктаза.

1.Принимает электроны от НАДН и передает их на коэнзим Q (убихинон). 2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

2ой-ФАД-зависимые дегидрогеназы.

1.Восстановление ФАД 3ий-цитохром с-оксидоредуктаза.

2.Принимает электроны от коэнзима Q и передает их на цитохром с.

3.Переносит 2 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

4ый-цитохром с-кислород оксидоредуктаза.

1.Принимает электроны от цитохрома с и передает их на кислород с образованием воды.

2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны. Все атомы водорода, отщепленные дегидрогеназами от субстратов в аэробных условиях, достигают внутренней мембраны митохондрий в составе НАДН или ФАДН2.

Электроны по мере передвижения теряют энергию->энергия тратиться комплексами на перекачку протонов Н.Перенос ионов Н происходит в строго определённых участках->участках сопряжения.Результат: происходит наработка АТФ: ионы H+ теряют свою энергию, проходя через АТФ-синтазу.Часть этой энергии тратится на синтез АТФ. Другая часть рассеивается в виде тепла.

Дыхательная цепь митохондрий состоит из 5 мультифер-ментных комплексов, субъединицы которых кодируются как ядерными, так и митохондриальными генами. В переноске электронов участвуют коэнзим Q10 и цитохром с. Электроны поступают от молекул NAD*H и FAD"H и переносятся по дыхательной цепи. Высвобождаемая энергия используется для транспорта протонов к внешней мембране митохондрий, а возникающий электрохимический градиент - для синтеза АТФ с помощью комплекса V дыхательной цепи митохондрий

44. Последовательность и строение переносчиков электронов в дыхательной цепи

1 комплекс. НАДН-КоQ-оксидоредуктаза

Этот комплекс также имеет рабочее название НАДН-дегидрогеназа, содержит ФМН (флавинмононуклеотид), 22 белковых молекулы, из них 5 железосерных белков с общей молекулярной массой до 900 кДа.

Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).

Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

2 комплекс. ФАД-зависимые дегидрогеназы

Он включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-дегидрогеназа (окисление жирных кислот), сукцинатдегидрогеназа (цикл трикарбоновых кислот), митохондриальная глицерол-3-фосфат-дегидрогеназа (челночный механизм переноса НАДН в митохондрию).

Восстановление ФАД в окислительно-восстановительных реакциях.

Обеспечение передачи электронов от ФАДН2 на железосерные белки внутренней мембраны митохондрий. Далее эти электроны попадают на коэнзим Q.

46. Биохимические механизмы разобщения окисления и фосфорилирования факторы их вызывающие Разобщение дыхания и фосфорилирования

Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. В этом случае скорость окисления NADH и FADH2возрастает, возрастает и количество поглощённого кислорода, но энергия выделяется в виде теплоты, и коэффициент Р/О резко снижается. Как правило, разобщители - липофильные вещества, легко проходящие через липидный слой мембраны. Одно из таких веществ - 2,4-динитрофенол (рис. 6-17), легко переходящий из ионизированной формы в неионизированную, присоединяя протон в межмембранном пространстве и перенося его в матрикс.

Примерами разобщителей могут быть также некоторые лекарства, например дикумарол - антикоагулянт (см. раздел 14) или метаболиты, которые образуются в организме, билирубин - продукт катаболизма тема (см. раздел 13), тироксин - гормон щитовидной железы (см. раздел 11). Все эти вещества проявляют разобщающее действие только при их высокой концентрации.

Выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения)

1. Суммарный выход:

Для синтеза 1 молекулы АТФ необходимо 3 протона.

2. Ингибиторы окислительного фосфорилирования:

Ингибиторы блокируют V комплекс:

Олигомицин - блокируют протонные каналы АТФ-синтазы.

Атрактилозид, циклофиллин - блокируют транслоказы.

3. Разобщители окислительного фосфорилирования:

Разобщители - липофильные вещества, которые способны принимать протоны и переносить их через внутреннюю мембрану митохондрий минуя V комплекс(его протонный канал). Разобщители:

Естественные - продукты перекисного окисления липидов, жирных кислот с длинной цепью; большие дозы тиреоидных гормонов.

Искусственные - динитрофенол, эфир, производные витамина К, анестетики.



Загрузка...