emou.ru

Основы пенного тушения: пены, пенообразователи, смачиватели, их назначение, виды, состав, физико-химические свойства и область применения. Меры безопасности при работе с пенообразователями. Подача пены от пожарного автомобиля без и с установкой на водоист

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ
И
ЭЛЕКТРИФИКАЦИИ « ЕЭС РОССИИ »

ДЕПАРТАМЕНТ НАУКИ И ТЕХНИКИ

ИНСТРУКЦИЯ
ПО
ЭКСПЛУАТАЦИИ УСТАНОВОК
ПОЖАРОТУШЕНИЯ
С ПРИМЕНЕНИЕМ
ВОЗДУШНО
- МЕХАНИЧЕСКОЙ ПЕНЫ

РД 34.49.502-96

ОРГРЭС

Москва 1996

Разработано Акционерным обществом «Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «ОРГРЭС».

Исполнители Д.А. ЗАМЫСЛОВ, А.Н. ИВАНОВ, А.С. КОЗЛОВ, В.М. СТАРИКОВ

Согласовано с Департаментом Генеральной инспекции по эксплуатации электростанций и сетей РАО «ЕЭС России» 16.04.96

Главный инженер А.Д. Щербаков

Утверждено Департаментом науки и техники РАО «ЕЭС России» 17.04.96

Начальник А.П. БЕРСЕНЕВ

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ. УСТАНОВОК ПОЖАРОТУШЕНИЯ С ПРИМЕНЕНИЕМ ВОЗДУШНО-МЕХАНИЧЕСКОЙ ПЕНЫ

РД 34.49.502-96

Срок действия установлен

с 01.01.97 г.

В настоящей Инструкции изложены основные требования по эксплуатации стационарных автоматических установок пенного пожаротушения, смонтированных на энергетических предприятиях.

Приведена принципиальная схема установки пожаротушения. Описаны условия хранения концентрата пенообразователей и их водных растворов. Изложены технические требования к эксплуатации оборудования установок пожаротушения в целом и их отдельных элементов.

Определен порядок организации испытаний и приемки в эксплуатацию вновь смонтированных установок пожаротушения и регламент проведения проверок технического состояния оборудования, аппаратуры и приборов установки пожаротушения и сроки ревизии всей установки.

Описаны характерные неисправности, которые могут возникнуть при работе установки пожаротушения, и даны рекомендации по их устранению.

Указаны основные требования техники безопасности при эксплуатации установок пенного пожаротушения.

Приведены формы актов промывки и гидравлического испытания напорных и распределительных трубопроводов установок пожаротушения, форма журнала учета технического обслуживания и ремонта установки пожаротушения, форма акта проведения огневых испытаний.

С выходом настоящей Инструкции утрачивает силу «Инструкция по эксплуатации установок пожаротушения с применением воздушно-механической пены» (М: СПО Союзтехэнерго, 1980).

1. ВВЕДЕНИЕ

1.1 . Воздушно-механическая пена является наиболее эффективным огнетушащим средством для тушения пожаров классов А (горение твердых веществ) и В (горение жидких веществ).

1.2 . Для получения воздушно-механической пены используются пенообразователи и пожарная техника. В зависимости от области применения пенообразователи подразделяются на две классификационные группы: общего и целевого назначения. К пенообразователям общего назначения относятся: ПО-3НП, ПО-3АИ ТЭАС. К пенообразователям целевого назначения относятся: «Сампо», «Морской», «Поток», «Пленкообразующий», «Форэтол», «Универсальный», ПОФ-9М.

Пенообразователи целевого назначения отличаются от пенообразователей общего назначения более высокой огнетушащей способностью за счет использования вторированных добавок.

Все пенообразователи общего и целевого назначения при неоднократном замерзании и последующем постепенном оттаивании не теряют своих первоначальных физико-химических свойств.

На энергетических предприятиях в основном применяются пенообразователи общего назначения.

1.3 . Для тушения пожаров на трансформаторах и реакторах применяется воздушно-механическая пена низкой кратности, на мазуто-маслохозяйствах - пена средней кратности.

Пена низкой кратности получается с помощью пенных оросителей ОПДР и его модификаций.

Для получения пены средней кратности могут применяться генераторы пены средней кратности ГПС-200, ГПС-600, ГПС-2000 и генераторы пены средней кратности стационарные ГПСС-600, ГПСС-2000.

1.4 . В настоящей Инструкции приняты следующие термины, определения и установленные сокращения:

АУПП - автоматическая установка пенного пожаротушения;

АУПС - автоматическая установка пожарной сигнализации;

НППТ - насос пенного пожаротушения;

НКР - насос концентрированного раствора;

ОПДР - ороситель пенный дренчерный розеточный;

ГПС - генератор пены средней кратности;

ГПСС - генератор пены средней кратности стационарный;

ГЩУ - главный щит управления;

ПУ - панель управления;

КР - концентрированный раствор;

ПО - пенообразователь;

ПИ - пожарный извещатель;

ОК - обратный клапан;

БЩУ - блочный щит управления.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1 . Настоящая Инструкция является основным техническим документом, используемым для разработки местных инструкций по эксплуатации конкретных установок пожаротушения воздушно-механической пеной, смонтированных на энергопредприятиях.

2.2 . Местную инструкцию по эксплуатации конкретной установки пожаротушения воздушно-механической пеной разрабатывает организация, производившая наладку данной установки, совместно с энергопредприятием, где она используется. Если наладка производилась энергопредприятием, то инструкция разрабатывается персоналом этого предприятия.

2.3 . При разработке местной инструкции, кроме данной Инструкции, необходимо учитывать требования проектной и технической документации на оборудование, приборы и аппаратуру, входящие в состав установки пожаротушения.

2.4 . В местную инструкцию должны быть включены соответствующие требования охраны труда и природоохранные мероприятия, обеспечивающие персоналу безопасность эксплуатации, технического надзора и проведение ремонтных работ на конкретной установке пожаротушения.

2.5 . Местная инструкция должна пересматриваться не реже одного раза в три года и каждый раз после реконструкции установки пенного пожаротушения или в случае изменения условий эксплуатации.

3. МЕРЫ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ АУПП

3.1 . Все вращающиеся части насосов ППТ, НКР должны быть огорожены защитными кожухами.

Запрещается уборка и протирка насосов во время их работы.

3.2 . Электротехническое оборудование насосов должно иметь исправное стационарное заземление.

3.3 . Включение оборудования в работу, операции с арматурой, отборы проб концентрированного пенообразователя и его раствора должны производиться не менее чем двумя лицами с площадок обслуживания.

3.4 . При работе с пенообразователями следует соблюдать меры предосторожности. Попадание концентрированного пенообразователя на незащищенную кожу вызывает раздражение. Воздействие на слизистую оболочку глаз приводит к раздражению и ожогу.

Работу с пенообразователями следует проводить в прорезиненных рукавицах, а глаза и лицо предохранять защитными щитками или очками.

При попадании пенообразователя на кожу, и особенно на слизистую оболочку глаз, их следует быстро промыть большим количеством проточной воды.

3.5 . Ремонтные работы на станции пенопожаротушения и на системе должны производиться только по наряду.

3.6 . На период пребывания в кабельных помещениях персонала (обход, ремонтные работы и т.п.) пуск установки пожаротушения переводится на дистанционный режим управления. По окончании выполнения работ в защищаемых помещениях восстанавливается автоматический режим работы установки пенного пожаротушения.

3.7 . При эксплуатации технологического оборудования установок пенного пожаротушения персонал энергопредприятий должен соблюдать установленные требования техники безопасности, изложенные в ПТЭ, ППБ, ПТБ и в заводских паспортах и инструкциях по эксплуатации конкретного оборудования.

3.8 . Запрещается сливать пенообразователь и его растворы в канализационные системы и ливневые стоки.

4. ПОРЯДОК ЭКСПЛУАТАЦИИ АУПП

4.1 . Автоматическая установка пенного пожаротушения (АУПП) предназначена для тушения пожаров в защищаемых помещениях и сооружениях энергопредприятия при получении сигнала о его возникновении от пожарных извещателей.

Все оборудование должно быть окрашено в цвета по стандарту и иметь четкие надписи.

4.2 . Принципиальная схема установки пожаротушения воздушно-механической пеной приведена на рисунке.


Принципиальная технологическая схема пожарной насосной станции с подачей готового раствора пенообразователя:

1 - резервуары запаса раствора пенообразователя; 2 - насосы подачи раствора пенообразователя; 3 - насосы подачи пенообразователя в резервуар, раствора пенообразователя в импульсное устройство, циркуляции раствора, пенообразователя; 4 - импульсное устройство (пневмобак); 5 - компрессор;

Задвижка; - обратный клапан.

Трубопроводы: раствора пенообразователя

водопровода

пенообразователя

циркуляции раствора

сжатого воздуха

Для снятия характеристики пеногенераторов или пенных оросителей при различных режимах работы, в схеме установки пожаротушения рекомендуется на напорном трубопроводе между насосом и ближайшей от насоса задвижкой установить специальный отвод, оборудованный на конце задвижкой и приспособлением для присоединения пеногенератора или пенного оросителя.

4.3 . В состав установки автоматического пенного пожаротушения входит следующее основное оборудование:

емкость для хранения концентрата пенообразователя или резервуар для хранения водного раствора пенообразователя;

источник водоснабжения (специальный резервуар или водопровод);

сеть трубопроводов;

насосы для забора и подачи воды или готового водного раствора пенообразователя;

запорно-пусковые устройства;

система автоматического управления (включая пожарную сигнализацию);

пеногенераторы или пенные оросители;

электроизмерительные приборы.

Кроме перечисленного основного оборудования, в схему АУПП могут быть включены:

насосы-дозаторы для подачи в напорные и распределительные трубопроводы расчетного количества пенообразователя;

бак с водой для заливки питательных насосов;

пневмобак для поддержания постоянного давления в сети АУПП;

компрессор для подпитки пневмобака воздухом.

4.4 . Перед заполнением баков для хранения раствора пенообразователя необходимо произвести их внутренний осмотр и очистку. После этого насосами заполнить емкость водой и концентрированным пенообразователем в пропорциях для получения необходимого состава раствора пенообразователя.

4.5 . Включить в работу насос пенного пожаротушения на рециркуляцию для перемешивания раствора в баках на 15 - 20 мин. При этом контролируется: утечка раствора по водоуказательным стеклам баков, отсутствие протечек в схеме, уровень пенообразователя в баках.

После этого проводится анализ раствора с записью в оперативном журнале.

4.6 . Запуск АУПП должен быть автоматический. Перевод установки пенотушения в дистанционный и ручной режим включения не допускается, за исключением случаев проведения ремонтных работ установки.

Автоматический пуск осуществляется от импульса пожарных извещателей, установленных в защищаемых помещениях (сооружениях).

4.7 . Дистанционный пуск АУПП осуществляется кнопкой или ключом ручного включения, установленными на специальных панелях или шкафах щита управления (главного, блочного, теплового и т.п.). Дистанционный пуск предусматривается для дублирования автоматического пуска.

4.8 . Устройства для местного пуска установки пожаротушения располагаются в помещении насосной станции и на узлах управления распределительных трубопроводов и предназначены для опробования и наладки установки пожаротушения, а также для запуска установки при отказах автоматического и дистанционного пусков.

4.9 . На щите управления должна находиться схема этой установки с кратким описанием устройства и работы АУПП. В Помещении насосной станции должны быть инструкция о порядке включения в работу насосов и открытия запорной арматуры, а также принципиальная и технологическая схемы.

4.10 . На узлах управления, оборудовании АУПП должны быть соответствующие наглядные схемы, надписи и указатели.

4.11 . Для получения воздушно-механической пены средней кратности применяются пеногенераторы ГПС-200, ГПС-600 и ГПС-2000, техническая характеристика которых приведена в табл. .

Таблица 1

Воздушно-механическая пена образуется в ре­зультате интенсивного механического перемешивания водного раствора пенообразователя с воздухом.

Для получения пены применяются пенообразователи ПО-1 и ПО-6.

Пенообразователь ПО-l представляет собой нейтрализованный керосиновый контакт, содержащий не менее 45% сульфокислот. Для получения необходимой кратности и стойкости пены в него добавляют 4,5% клея и 10% спирта или этиленгликоля.

Пенообразователь ПО-6 является продуктом щелочного гид­ролиза технической крови животных. Для придания устойчи­вости пены в него добавляют 1% сернокислого закисного же­леза. Чтобы предотвратить загнивание пенообразователя при длительном хранении, в него добавляют 4% фтористого натрия.

Пенообразователи должны удовлетворять требованиям ГОСТ 6948-54 и ГОСТ 9603-61.

Воздушно-механическая пена состоит из пузырьков, оболочка которых образована из раствора пенообразователя. В пузырьках содержится (в зависимости от пенообразователя) воздуха до 90%, воды 9,5% и пенообразователя до 0,5%. Удельный вес пены от 0,11 до 0,17.

Получается воздушно-механическая пена с помощью специальных аппаратов (смесителей и воздушно-пенных стволов). Стойкость пены на основе пенообразователя ПО-1 составляет 30 мин, а на основе пенообразователя ПО-6- не менее 60 мин.

ВНИИПО разработана рецептура пенообразователя ПО-8 для получения воздушно-механической пены повышенной стой­кости, которая используется при тушении нефтепродуктов" и полярных жидкостей (спирта, ацетона и др.).

Воздушно-механическую пену по кратности выхода подразделяют на пену нормальной и высокой кратности.

Пена нормальной кратности считается в том случае, когда из 1 л пенообразователя ПО-1 и 25 л воды образуется от 200 до 300 л пены, из 1 л пенообразователя ПО-6 и 25 л воды - от 125 до 175 л.

Пена из пенообразователя ПО-6 более стойка, чем из пенообразователя ПО-1. Для получения пены нормальной крат­ности используют водные растворы пенообразователей ПО-1 (3-4% по объему) и ПО-6 (4-6% по объему).

Пенообразователь ПО-1 считается годным, если кратность выхода пены не менее 10, стойкость ее не менее 30 мин, а пено­образователь ПО-6,- если кратность выхода пены не менее 5, стойкость ее не менее 60 мин.

Пена нормальной кратности хорошо удерживается на вертикальных поверхностях, поэтому она может применяться для защиты материалов и конструкций от загорания при воздей­ствии лучистой теплоты.

Воздушно-механическую пену нормальной кратности целесообразно применять для тушения нефтепродуктов с темпе­ратурой вспышки 45° С и выше, находящихся в емкостях, и нефтепродуктов с температурой вспышки 45° С и ниже (за ис­ключением авиабензина), разлитых тонким слоем по твердому покрову или на поверхности воды.

Ее можно использовать также для тушения нефтепродуктов с температурой вспышки 45° С и ниже (за исключением бензина) в емкостях. Но при этом надо помнить, что для ту­шения нефтепродуктов с температурой вспышки 28° С и ниже на площади не более 100 м 2 можно применять воздушно-меха­ническую пену нормальной кратности на основе пенообразова­теля ПО-1, а на площади не более 400-500 м 2 - на основе пе­нообразователя ПО-6. Расстояние от верхней кромки борта ем­кости до зеркала жидкости должно быть не более 2 м. Это ус­ловие следует соблюдать также и при тушении нефтепродуктов с температурой вспышки от 28 до 45° С.

Пенообразователи неэффективны при тушении пожаров полярных жидкостей (спирта, эфира, ацетона).

Для тушения нефтепродуктов (бензина, керосина, сырой нефти, мазута) наряду с пенообразователем ПО-1 используют смачиватель НБ.

ВНИИПО разработан способ тушения нефтепродуктов в емкостях путем подачи воздушно-механической пены через слой горючего. В данном случае пожар можно тушить при любом уровне горючего в емкостях.

Пена высокой кратности на основе пенообразователей ПО-1 или ПО-6 вырабатывается „специальным генератором, работающим по принципу усиленного подсоса воздуха. Она может применяться для локализации пожаров твердых веществ, пла­менного горения в помещениях. Высокую огнегасительную эф­фективность пена дает при тушении нефтепродуктов.

При тушении ею пламенного горения в помещениях происходит вытеснение дыма и продуктов сгорания, локализация очагов горения, создаются благоприятные условия для полного прекращения горения.

По мере заполнения помещений пеной высокой кратности температура в них быстро снижается в результате вытеснения горячих газов, прекращения горения и частичного охлаждения конструкций. Температура в горящем помещении, как свидетельствует практика, сразу же после подачи в него пены мо­жет снизиться с 1000° С и более до 65-50° С.

После заполнения помещения пеной температура в нем мо­жет вновь повыситься, так как нагретые конструкции перекры­тий из-за кратковременного действия пены не успевают ох­лаждаться.

Пеной высокой кратности можно тушить лишь пламя вслед­ствие наличия в ней большого количества воздуха и ограни­ченного времени ее подачи. Очаги тления твердых веществ при этом остаются непогашенными.

Под воздействием теплоты, выделяющейся при тлении, пена быстро разрушается.

Полная ликвидация очагов тления зависит от интенсивности и времени подачи пены и от того, насколько быстро она прони­кает к местам горения.

Практически пена высокой кратности нетеплопроводна. Ко­лебания температуры окружающей среды от -30 до +30° С существенного влияния на качество пены не оказывают. При низких температурах (ниже -15° С) стойкость пены несколько снижается, хотя на поверхности ее образуется устойчивая кор­ка. Высокая температура ускоряет разрушение пены.

Пена не оказывает вредного действия на большинство материалов и оборудование, не создает дополнительной нагрузки на конструкции в связи с незначительным объемным весом ее.

Пенообразующий раствор является хорошим смачивателем и поэтому свободно проникает внутрь материалов, в том числе волокнистых.

При пользовании воздушно-механической пеной значитель­но облегчается труд пожарных во время тушения пожара. По­этому ее широко применяют при тушении пожаров, она явля­ется основным средством пожаротушения.

При тушении нефтепродуктов необходимо применять расчетное количество как химической, так и воздушномеханиче­ской пены. Указания по их расчету излагаются в приложении 4 «Правил пожарной безопасности на речном транспорте Ми­нистерства речного флота РСФСР».

Углекислота (техническое название двуокиси углерода) С0 2 - бесцветный газ с едва ощутимым запахом, не горит и не поддерживает горения, не проводит ток. Огнегасительная концентрация паров углекислоты в воздухе должна быть 22,4% (по объему). При 0°С и давлении 36 кгс/см 2 легко сжижается, пере­ходя из газообразного состояния в жидкое.

Теплота испарения жидкой углекислоты 47,7 кал/кг. При бы­стром испарении жидкой углекислоты образуется твердая (сне­гообразная) углекислота. Удельный вес такой углекислоты при температуре -79° С равен 1,53.

Углекислота или углекислый снег, направленные в зону пожара, снижают концентрацию кислорода в ней до такой величи­ны, при которой невозможно горение, а также охлаждают горя­щее вещество и окружающую среду, в результате чего горение прекращается.

Углекислота применяется для тушения пожаров в закрытых помещениях (в условиях ограниченного воздухообмена) и на сравнительно небольшой площади непосредственно на /воздухе. Она используется для тушения пожаров электроустановок под напряжением.

При тушении пожаров в закрытых помещениях расходуется 0,495 кг/м 3 углекислоты, а в наиболее пожароопасных помещениях -0,594 /кг/м 3 .

Пламенное горение в грузовом трюме судна при применении углекислоты прекращается в тех случаях, когда процентное со­держание кислорода в нем снижается до 14%. Тление же при этом продолжается. Для его прекращения содержание кислоро­да в трюме необходимо довести до 5%. Углекислоту надо пода­вать в трюм до тех пор, пока полностью не прекратится тление, а оно может продолжаться от нескольких часов до одних-двух суток.

Углекислота как самостоятельное огнегасительное средство" в стационарных противопожарных установках на речном тран­спорте применяется редко. Она заменяется более эффективными средствами - галоидуглеводородами: бромистым этилом, броми­стым метиленом, тетрафтордибромэтаном, которые входят в со­ставы таких огнегасительных смесей, как «3,5», СЖБ и однокомпонентный фреон-114В2.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению
в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 2.36).


Рис. 2.36. Классификация пенных пожарных стволов

Пенный ствол – устройство для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности, устанавливаемое на конце напорной линии.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы (СВП) и стволы воздушно-пенные с эжектируемым устройством (СВПЭ). Они имеют одинаковое устройство и отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 2.37) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола
к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена направляющая труба 5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6 , вакуумная 3 и выходная 4 . На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола
не менее 600 мм рт. ст. (0,08 МПа).

Рис. 2.37. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера;
5 – направляющая труба; 6 – приемная камера;

7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 2.38) заключается
в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1 , создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.


Рис. 2.38. Ствол воздушно-пенный (СВП):

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бачка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 2.24.

Таблица 2.24

Показатели Размерность Тип ствола
СВП СВПЭ-2 СВПЭ-4 СВПЭ-8
Производительность по пене м 3 /мин
Рабочее давление перед стволом МПа 0,4–0,6 0,6 0,6 0,6
Расход воды л/с 4,0 7,9 16,0
Расход 4–6 % раствора пенообразователя л/с 5–6
Кратность пены на выходе из ствола 7,0 (не менее) 8,0 (не менее)
Дальность подачи пены м
Соединительная головка ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности (ГПС).

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 2.25.

Таблица 2.25

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны
и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 2.39): насадка 1 , пакета сеток 2 ,корпуса генератора 3 с направляющим устройством, коллектора 4 и распылителя центробежного 5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в который вмонтированы распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель центробежный 3 имеет шесть окон, расположенных под углом 12°, что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток.

5
4
3
2
1

Рис. 2.39. Генератор пены средней кратности ГПС-600:

1 – насадок; 2 – пакет сеток; 3 – корпус генератора;

4 – коллектор; 5 – распылитель центробежный

На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.


Контрольные вопросы

1. Назначение и классификация пожарных рукавов.

2. Особенности конструкции всасывающих и напорно-всасывающих рукавов. Их функции. Область применения.

3. Классификация пожарных рукавов. Особенности их конструкций.

4. Проанализировать потери напора в напорных рукавах. Определение потери напора в рукавных линиях.

5. Классификация гидравлического оборудования. Его назначение. Устройство.

6. Классификация пожарных стволов. Назначение. Особенности подачи огнетушащих веществ.

7. Изложите особенности конструкции стволов РС-70 и КБ-Р.

8. Назначение стволов лафетных комбинированных. Классификация. Дальность подачи водяных и пенных струй.

9. Изложите различие принципов образования пены при подаче воздушно-пенными стволами СВПЭ и СВП.

10. Устройство генераторов пены средней кратности. Основные показатели их технических характеристик.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 3.23).

ПЕННЫЕ ПОЖАРНЫЕ СТВОЛЫ

Для получения пены низкой кратности

Для получения пены средней кратности

Комбинированные для получения пены низкой и средней кратности

Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная6 , вакуумная3 и выходная4 . На вакуумной камере расположен ниппель2 диаметром 16 мм для присоединения шланга1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола1 , создает в конусной камере3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель

Размерность

Тип ствола

Производительность по пене

Рабочее давление перед стволом

Расход воды

Кратность пены на выходе из ствола

(не менее)

(не менее)

Дальность подачи пены

Соединительная головка

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Показатель

Размерность

Генератор пены средней кратности

Производительность по пене

Кратность пены

Давление перед распылителем

Расход 4 – 6 % раствора пенообразователя

Дальность подачи пены

Соединительная головка

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток2 , распылителя центробежного3 , насадка4 и коллектора5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель3 и муфтовая головка ГМ-70. Пакет сеток2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Вкачестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Таблица 3.12

Показатель

Размер- ность

Установка комбинированного тушения пожара (УКТП) типа

«Пурга-5»

«Пурга-7»

«Пурга-10»

«Пурга-10.20.30»

«Пурга-30.60.90»

«Пурга-200–240»

Производительность по раствору пенообразователя

Производительность по пене средней кратности

Дальность подачи струи пены средней кратности

Рабочее давление перед стволом

Кратность пены

пенообразователя

Подача воздушно-механической пены


При тушении пожара нефти и нефтепродуктов или других легковоспламеняющихся жидкостей, а также для защиты сгораемых конструкций зданий и сооружений от воздействия лучистой теплоты применяется воздушно-механическая пена.

Подача пенообразователя из бака, а воды из цистерны. Рассмотрим последовательность операций по подаче воздушно-механической пены на примере работы автоцистерны АЦ-40(133Г1)-181, которая выполняется в такой последовательности: – присоединить напорный рукав с генератором ГПС к насосу; – проверить, закрыты ли заглушки на всасывающих патрубках насоса; – закрыть все вентили и сливной краник насоса; открыть клапан трубопровода от цистерны и залить насос водой (при этом задвижка одного из напорных патрубков должна быть приоткрыта или вакуум-клапан должен быть открыт); включить насос и создать давление 700-800 кПа; – установить стрелку крана-дозатора пеносмесителя на деление шкалы, соответствующее производительности присоединенных генераторов пены ГПС; – открыть пробковый кран пеносмесителя и кран от пенобака к пеносмесителю; – поддерживать режим работы таким, чтобы напор у генератора пены ГПС был не менее 400-600 кПа.

Подача пенообразователя из пенобака, а воды из водоема или пожарного гидранта. При работе по такой схеме необходимо выполнить все операции по заполнению пожарного центробежного насоса водой от открытого водоисточника или водопровода. При работе от пожарной колонки, устанавливаемой на гидрант водопровода, напор во всасывающем патрубке насоса не должен превышать 250 кПа. Регулирование напора во всасывающем патрубке пожарного насоса необходимо производить при работающем насосе и открытых задвижках на напорных патрубках изменением степени открытия вентилей пожарной колонки.

Для подачи пенообразователя в насос в этом случае последовательность операций должна быть такой: – установить напор на насосе 700-800 кПа; стрелку пеносмесителя установить на деление, соответствующее производительности воздушно-пенных стволов или ГТ1С; – открыть пробковый кран пеносмесителя и клапан от пенобака к пеносмесителю; – установить режим работы насоса с таким расчетом, чтобы обеспечить давление перед воздушно-пенными стволами или генераторами пены в пределах 400-600 кПа.

Подача пенообразователя к пеносмесителю из посторонней емкости. При тушении затяжных пожаров запаса пенообразователя в цистернах и баках автоцистерн может не хватить. В этом случае подачу пенообразователя в насос можно производить из посторонней емкости, например из бочки с пенообразователем. При этом необходимо выполнить все операции для подачи пенообразователя из пенобака, а также отвернуть заглушку на трубопроводе, соединяющем пеносмеситель с баком для пенообразователя, и присоединить к штуцеру шланг, свободный конец которого опустить в емкость с пенообразователем.



Загрузка...