emou.ru

Атомы периодической системы. Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атома

Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественнойклассификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

1. формулировка периодического закона

Д. И. Менделеева в свете теории строения атома.

Открытие периодического закона и разработка периодической системы химических элементов Д. И. Менделеевым явились вершиной развития химии в XIX веке. Обширная сумма знаний о свойствах 63 элементов, известных к тому времени, была приведена в стройный порядок.

Д. И. Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон.

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Весь ряд элементов, расположенных в порядке возрастания атомных масс, Менделеев разбил на периоды, внутри которых свойства элементов изменяются последовательно, разместив периоды так, чтобы выделить сходные элементы.

Однако, несмотря на огромную значимость такого вывода, периодический закон и система Менделеева представляли лишь гениальное обобщение фактов, а их физический смысл долгое время оставался непонятным. Лишь в результате развития физики XX века - открытия электрона, радиоактивности, разработки теории строения атома - молодой, талантливый английский физик Г. Мозле установил, что величина зарядов ядер атомов последовательно возрастает от элемента к элементу на единицу. Этим открытием Мозле подтвердил гениальную догадку Менделеева, который втрех местах периодической таблицы отошел от возрастающей последовательности атомных весов.

Так, при ее составлении Менделеев поставил 27 Со перед 28 Ni, 52 Ti перед 5 J, 18 Аг перед 19 К, несмотря на то, что это противоречило формулировке периодического закона, то есть расположению элементов в порядке увеличения их атомных весов.

Согласно закону Мозле заряды ядерданных элементов соответствовали положению их в таблице.

В связи с открытием закона Мозле современная формулировка периодического закона следующая:

свойство элементов, а так же формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов.

Связь периодического закона и периодической системы со строением атомов.

Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства Элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1-до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов; то и они периодически повторяются. В этом физический смысл периодического закона.

В качестве примера рассмотрим изменение свойств у первых и последних элементов периодов. Каждый период в периодической системе начинается элементами атомы, которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

Заканчивается период элементами, атомы которых на внешнем уровне содержат 2 (s 2) электрона (в первом периоде) или 8 (s 1 p 6)электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Ar, Kr, Xe, имеющие инертные свойства.

Именно вследствие сходства строения внешнего энергетического уровня похожи их физические и химические свойства.

В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева­ют и возрастают неметаллические, заканчивается период инертным газом. В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева­ют и возрастают неметаллические, заканчивается период инертным газом.

В свете учения о строении атома становится понятным разделение всех элементов на семь периодов, сделанное Д. И. Менделеевым. Номер периода соответствует числу энергетических уровней атома,то есть положение элементов в периодической системе обусловлено строением их атомов. В зависимости от того, какой подуровень заполняется электронами, все элементы делят на четыре типа.

1. s-элементы. Заполняется s-подуровень внешнего уровня (s 1 - s 2). Сюда относятся первые два элемента каждого периода.

2. р-элементы. Заполняется р-подуровень внешнего уровня (р 1 -- p 6)-Сюда относятся последние шесть элементов каждого периода, начиная со второго.

3. d-элементы. Заполняется d-подуровень последнего уровня (d1 - d 10), а на последнем (внешнем) уровне остается 1 или 2 электрона. К ним относятся элементы вставных декад (10) больших периодов, начиная с 4-го, расположенные между s- и p-элементами (их также называют переходными элементами).

4. f-элементы. Заполняется f-подуровень глубинного (треть его снаружи) уровня (f 1 -f 14),а строение внешнего электронного уровня остается неизменным. Это лантаноиды и актиноиды, находящиеся в шестом и седьмом периодах.

Таким образом, число элементов в периодах (2-8-18-32) соответствует максимально возможному числу электронов на соответствующих энергетических уровнях: на первом - два, на втором - восемь, на третьем - восемнадцать, а на четвертом - тридцать два электрона. Деление групп на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s - и p-элементы, а побочную подгруппу - d-элементы. В каждой группе объединены элементы, атомы которых имеют сходное строение внешнего энергетического уровня. При этом атомы элементов главных подгрупп содержат на внешних (последних) уровнях число электронов, равное номеру группы. Это так называемые - валентные электроны.

У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вто­рых снаружи) уровней, в чем и состоит основное различие в свойствах элементов главных и побочных подгрупп.

Отсюда следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы.

С позиций теории строения атома легко объясняется возрастание металлических свойств элементов в каждой группе с ростом заряда ядра атома. Сравнивая, например, распределение электронов по уровням в атомах 9 F (1s 2 2s 2 2р 5) и 53J(1s 2 2s 2 2р 6 3s 2 Зр 6 3d 10 4s 2 4р 6 4 d 10 5s 2 5p 5) можно отметить, что у них по 7 электронов на внешнем уровне, что указывает на сходство свойств. Однако внешние электроны в атоме йода находятся дальше от ядра и поэтому слабее удерживаются. По этой причине атомы йода могут отдавать электроны или, иными словами, проявлять металлические свойства, что нехарактерно для фтора.

Итак, строение атомов обуславливает две закономерности:

а) изменение свойств элементов по горизонтали - в периоде слева направо ослабляются металлические и усиливаются неметаллические свойства;

б) изменение свойств элементов по вертикали - в группе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.

Таким образом: по мере возрастания заряда ядра атомов химических элементов периодически изменяется строение их электронных оболочек, что является причиной периодического изменения их свойств.

3. Структура периодической Системы Д. И. Менделеева.

Периодическая система Д. И. Менделеева подразделяется на семь периодов – горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера, и восемь групп – последовательностей элементов обладающих однотипной электронной конфигурацией атомов и сходными химическими свойствами.

Первые три периода называются малыми, остальные – большими. Первый период включает два элемента, второй и третий периоды – по восемь, четвёртый и пятый – по восемнадцать, шестой – тридцать два, седьмой (незавершённый) – двадцать один элемент.

Каждый период (исключая первый) начинается щелочным металлом и заканчивается благородным газом.

Элементы 2 и 3 периодов называются типическими.

Малые периоды состоят из одного ряда, большие – из двух рядов: чётного (верхнего) и нечётного (нижнего). В чётных рядах больших периодов расположены металлы, и свойства элементов слева направо изменяются слабо. В нечётных рядах больших периодов свойства элементов изменяются слева направо, как у элементов 2 и 3 периодов.

В периодической системе для каждого элемента указывается его символ и порядковый номер, название элемента и его относительная атомная масса. Координатами положения элемента в системе является номер периода и номер группы.

Элементы с порядковыми номерами 58-71, именуемыми лантаноидами, и элементы с номерами 90-103 - актиноиды – помещаются отдельно внизу таблицы.

Группы элементов, обозначаемые римскими цифрами, делятся на главные и побочные подгруппы. Главные подгруппы содержат 5 элементов (или более). В побочные подгруппы входят элементы периодов, начиная с четвёртого.

Химические свойства элементов обуславливаются строением их атома, а точнее строением электронной оболочки атомов. Сопоставление строения электронных оболочек с положением элементов в периодической системе позволяет установить ряд важных закономерностей:

1. Номер периода равен общему числу энергетических уровней, заполняемых электронами, у атомов данного элемента.

2. В малых периодах и нечётных рядах больших периодов с ростом положительного заряда ядер возрастает число электронов на внешнем энергетическом уровне. С этим связано ослабление металлических и усиление неметаллических свойств элементов слева направо.

Номер группы, указывает число электронов, которые могут участвовать в образовании химических связей (валентных электронов).

В подгруппах с ростом положительного заряда ядер атомов элементов усиливаются их металлические и ослабляются неметаллические свойства.

Химических элементов Д. И. Менделеева - основа современной химии. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Их открытие было подготовлено всем ходом истории развития химии, однако потребовалась гениальность Д. И. Менделеева, его дар научного предвидения, чтобы эти закономерности были сформулированы и графически представлены в виде таблицы. Мы будем пользоваться современными синонимами тех терминов, которые применял великий русский химик.

Предпосылки открытия Периодического закона Д. И. Менделеевым

Накопление фактологического материала

Ко времени открытия Периодического закона было известно 63 химических элемента, описаны состав и свойства их многочисленных соединений.

Работы ученых - предшественников Д. И. Менделеева

Классификация Берцелиуса. Выдающийся шведский химик Й. Я. Берцелиус разделил все элементы на металлы и неметаллы на основе различий в свойствах образованных ими простых веществ и соединений. Он определил, что металлам соответствуют основные оксиды и основания, а неметаллам - кислотные оксиды и кислоты.

Но групп было всего две, они были велики и включали значительно отличающиеся друг от друга элементы. Наличие амфотерных оксидов и гидроксидов у некоторых металлов вносило путаницу. Классификация была неудачной.

Триады Деберейнера (1816 г.). Немецкий химик И. В. Деберейнер разделил элементы по три на основе сходства в свойствах образуемых им веществ и так, чтобы величина, которую мы сейчас понимаем как относительную атомную массу (Ат) среднего элемента, была равна среднему арифметическому двух крайних. Пример триады: Li, Nа, К.

А r (Nа) = (7 + 39): 2 = 23

Примерами других триад могут служить:

Работа И. Деберейнера послужила подтверждением мысли о наличии определенной связи между атомными массами и свойствами элементов. Но ему удалось составить лишь четыре триады, классифицировать все известные в то время элементы он не сумел.

Спираль Шанкуртуа (1862 г.). Профессор Парижской высшей школы А. Бегье де Шанкуртуа предложил располагать элементы по спирали или образующей цилиндра в порядке возрастания их атомных масс и указал, что в этом случае можно заметить сходство свойств образуемых элементами веществ, если они попадают на одну и ту же вертикальную линию цилиндра, располагаясь один под другим, например:

Октавы Ньюлендса (1865 г.). Американский химик Д. А. Р. Ньюлендс пытался расположить известные ему элементы в порядке возрастания их атомных масс и обнаружил поразительное сходство между каждым восьмым по счету элементом, начиная с любого, подобно строению музыкальной октавы, состоящей из восьми звуков. Он назвал свое открытие законом октав:
[]

Однако ему не удалось удовлетворительно объяснить найденную закономерность, более того, в его таблице не нашлось места не открытым еще элементам, а в некоторые вертикальные столбцы попали элементы, резко отличающиеся по своим свойствам. Лондонское химическое общество встретило его закон октав равнодушно и предложило Ньюлендсу попробовать расположить элементы по алфавиту и выявить какую-либо закономерность. Таблица Мейера (1864 г.). Немецкий исследователь Л. Мейер расположил химические элементы также в порядке увеличения их атомных масс:

Но в эту таблицу Мейер поместил всего 27 элементов, то есть меньше половины известных в то время. Расположение остальных элементов: В, Аl, Си, Ag и др. - оставалось неясным, а структура таблицы была неопределенной.

До Д. И. Менделеева было предпринято около 50 попыток классифицировать химические элементы. Большинство ученых пытались выявить связь между химическими свойствами элементов и их соединений и атомной массой. Но создать классификацию, включающую все известные в то время химические элементы, не удалось. Ни одна из попыток не привела к созданию системы, отражающей взаимосвязь элементов и выявляющей природу их сходства и различия. Открытие Периодического закона и построение Периодической системы химических элементов - заслуга великого русского ученого Д. И. Менделеева .

В отличие от работ предшественников предложенная Д. И. Менделеевым таблица Периодической системы химических элементов имела четкую структуру в виде групп и периодов (с рядами), в которой нашлось место не только для всех известных в то время элементов, но были оставлены пустые места для еще не открытых. Система Д. И. Менделеева позволила не только предсказать существование неизвестных элементов, но и предугадать их свойства, исправить неверно определенные атомные массы уже известных элементов.

Съезд химиков в Карлсруэ

Третьей предпосылкой открытия Периодического закона послужили решения международного съезда химиков в г. Карлсруэ в 1860 г., когда окончательно утвердилось атомно-молекулярное учение, были приняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой (Аг). Именно это понятие как неизменную характеристику атомов химических элементов Д. И. Менделеев положил в основу своей классификации. Он писал: «Масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными их весами - с другой».

Предшественники Д. И. Менделеева сравнивали между собой только сходные элементы, а поэтому и не смогли открыть Периодический закон. В отличие от них Д. И. Менделеев обнаружил периодичность в изменении свойств химических элементов, расположенных в порядке возрастания величин их атомных масс, сравнивая между собой все известные ему, в том числе и несходные, элементы.

Д. И. Менделеев в своем открытии опирался на четко сформулированные исходные положения:

Общее неизменное свойство атомов всех химических элементов - их атомная масса;

Свойства элементов зависят от их атомных масс;

Форма этой зависимости - периодическая.

Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

Но без личностных качеств великого химика, которые составляют четвертую, субъективную предпосылку открытия Периодического закона, вряд ли он был бы открыт в 1869 г. Если бы его открыл какой-нибудь другой химик, вероятно, это произошло бы намного позже. Энциклопедичность знаний, научная интуиция, умение обобщать, постоянное стремление к познанию неведомого, дар научного предвидения Д. И. Менделеева сыграли свою немалую роль в открытии Периодического закона.

Открытие Д. И. Менделеевым Периодического закона

В основу своей работы по классификации химических элементов Д. И. Менделеев положил два их основных и постоянных признака: величину атомной массы и свойства. Он выписал на карточки все известные сведения об открытых и изученных в то время химических элементах и их соединениях. Сопоставляя эти сведения, ученый составил естественные группы сходных по свойствам элементов, сравнение которых между собой показало, что даже элементы несходных групп имеют объединяющие их признаки. Например, близки по значениям атомные массы фтора и натрия, хлора и калия (инертные газы еще не были известны), следовательно, щелочные металлы и галогены можно поставить рядом, выстраивая химические элементы в порядке возрастания атомных масс. Так Д. И. Менделеев объединил естественные группы химических элементов в единую систему.

Дмитрий Иванович Менделеев (1834-1907)

Великий русский ученый, один из основоположников современной химии. Создатель естественной классификации химических элементов - Периодической системы элементов, явившейся выражением Периодического закона химических элементов. Создал фундаментальный труд - учебник «Основы химии», в котором впервые вся неорганическая химия изложена на основе Периодического закона. Он автор химической теории растворов. В своих трудах много внимания уделял развитию отечественной промышленности и химизации сельского хозяйства.

Д. И. Менделеев доказывал необходимость создания химических производств: соды, серной кислоты, минеральных удобрений. Обосновывал идеи подземной газификации угля и применение кислорода в металлургической промышленности. Предложил способ непрерывной переработки нефти, а также оригинальную теорию ее происхождения.

При этом он обнаружил, что свойства элементов изменяются в пределах определенных их совокупностей линейно (монотонно возрастают или убывают), а затем повторяются периодически, то есть через определенное число элементов встречаются сходные. Ученый выделил периоды, в которых свойства химических элементов и образованных ими веществ закономерно изменяются. Рассмотрим эти изменения, используя современные термины.

1. Металлические свойства простых веществ, наиболее ярко выраженные у щелочных металлов, ослабевают и сменяются неметаллическими, которые наиболее ярко выражены у галогенов.

2. Значение степени окисления атомов элементов в высших оксидах возрастает от +1 до +7 (+8 только для Оs и Ru).

3. Значение степени окисления атомов элементов в гидридах (соединениях металлов с водородом) и в летучих водородных соединениях возрастает сначала от +1 до +3 и затем от -4 до -1.

4. Основные оксиды элементов начала периода сменяет амфотерный оксид и далее - кислотные, свойства которых усиливаются.

5. Гидроксиды-основания через амфотерный гидроксид сменяются все более сильными кислотами.

На основании этих наблюдений Д. И. Менделеев сформулировал Периодический закон, который в соответствии с принятой в настоящее время терминологией звучит так:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс.

Для иллюстрации этого закона мы использовали рассмотренные периодичности (дискретности, прерывистости через определенные промежутки) только по горизонтали. Однако Периодический закон и Периодическая система гораздо более богаты периодическими закономерностями: кроме рассмотренной горизонтальной (по периодам) периодичности есть также периодичность вертикальная (по группам) и диагональная.

Вам уже хорошо знакома вертикальная периодичность: в группах (главных подгруппах) с ростом порядковых номеров элементов усиливаются металлические свойства образуемых ими простых веществ и ослабевают неметаллические свойства; усиливается основный характер оксидов и гидроксидов; уменьшается прочность летучих водородных соединений и соответственно увеличиваются их кислотные свойства.

Под диагональной периодичностью понимают повторяемость сходства химических свойств простых веществ и соединений элементов, расположенных по диагонали друг от друга в Периодической системе.

Сходство в свойствах между простыми веществами и соединениями, образованными химическими элементами, расположенными по диагонали, объясняется тем, что нарастание неметаллических свойств в периодах слева направо приблизительно уравновешивается эффектом увеличения металлических свойств в группах сверху вниз.

Например, металл литий Li похож на магний во всем, что отличает его от натрия Na. Аналогично бор В больше напоминает кремний чем алюминий Аl.

К числу общих химических свойств у Li и Mg следует отнести их способность легко воспламеняться, неустойчивость их нитратов и карбонатов, малую растворимость в воде фторидов, фосфатов и силикатов.

Диагональное сходство Ве и Аl выражается в том, что оба металла одинаково реагируют с кислотами и щелочами, а их оксиды и гидроксиды амфотерны.

Бор и кремний образуют похожие простые вещества, которые инертны и тугоплавки, а оксиды и гидроксиды обладают кислотными свойствами. Бор, подобно углероду и кремнию, образует летучие водородные соединения, по способам получения и свойствам аналогичные кремневодородам (силанам): В2Н6, В4Н10 и т. д.

Лучше всего диагональную периодичность свойств неметаллов характеризует хорошо известная вам диагональ В - Si- As- Те - Аt, которая условно делит элементы на металлы и неметаллы, или диагональ С - Р - Sе - I.

Две диагонали: Аl - Gе - Sb и Zn - In - РЬ - включают элементы, оксиды и гидроксиды которых обладают амфотерными свойствами.

Если объединить горизонтальную, вертикальную и диагональную периодичности, то можно получить «звездную периодичность».

Именно учет всех видов периодичности позволил Д. И. Менделееву не только предсказать, описать свойства веществ, образованных еще не открытыми химическими элементами, но и указать пути их открытия, природные источники (руды и соединения), из которых могли быть получены соответствующие простые вещества.

Периодический закон и строение атома

Формулировка закона, данная Д. И. Менделеевым, не могла быть точной и полной с современной точки зрения, так как она соответствовала состоянию науки на тот период времени, когда не было известно строение атома. Поэтому новые научные открытия вступили с ней в противоречие. Так, были открыты изотопы.

Изотопы - разновидности атомов одного и того же химического элемента, имеющие одинаковый заряд ядра, но разные массовые числа.

Сумму чисел протонов и нейтронов в ядре атома называют массовым числом и обозначают буквой А.

Очевидно, что ядра изотопов одного химического элемента имеют одинаковое число протонов, но различаются числом содержащихся в них нейтронов. Следовательно,

химический элемент - это вид атомов, характеризующихся одинаковым зарядом ядра, то есть содержащих одинаковое число протонов.

Изотопы известны для всех химических элементов. В природе большинство их существует в виде смеси изотопов. Относительная атомная масса элемента равна среднему значению относительных атомных масс всех его природных изотопов с учетом их распространенности.

Данные об изотопах некоторых химических элементов приведены в таблице 5, указаны их массы и процентное содержание в природе (по массе).

В таблице Периодической системы под символами химических элементов приведены средние значения их относительных атомных масс. Их можно рассчитать, зная массовое число каждого изотопа и массовую долю его в природной смеси. Так,

А r (Сl) = 35 0,75 + 37 0,25 = 35,5

Таблица 5 Изотопы некоторых химических элементов



Наличие изотопов доказывает, что свойства химических элементов определяются не столько их атомной массой, как предполагал Д. И. Менделеев, сколько зарядом атомных ядер. Этим и объясняется положение в Периодической системе четырех пар элементов, размещенных с нарушением принципа возрастания относительных атомных масс:

18Аг (39,948) - 19К (39,102) 27Со (58,933) - 28№ (58,71) 52Те (127,60) - 531 (126,904) 90ТЬ (232,038) - 91Ра (231)

В том-то и гениальность, проявление научной интуиции великого русского химика, что он в указанных случаях предпочел расположить элементы по сходству в свойствах, предугадал истинный порядок размещения химических элементов по возрастанию зарядов их атомных ядер, хотя о строении их атомов ничего не знал.

Впервые физический смысл порядкового (атомного) номера раскрыл голландец Ван-ден-Брук, который теоретически доказал, что порядковый номер химического элемента равен заряду ядра его атома. Гипотеза Ван-ден-Брука была экспериментально подтверждена англичанином Г. Мозли.

Открытие изотопов и закономерность Ван-ден-Брука- Мозли позволили дать другое, современное определение Периодического закона:

Свойства химических элементов и образуемых ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

Периодическая система химических элементов и строение атома

Таблица Периодической системы химических элементов графически отображает Периодический закон. Каждое число в ней характеризует какую-либо особенность в строении атомов:
а) порядковый (атомный) номер химического элемента указывает на заряд его атомного ядра, то есть на число протонов, содержащихся в нем, а так как атом электронейтрален, то и на число электронов, находящихся вокруг атомного ядра. Число нейтронов определяют по формуле
N = A - Z
где А - массовое число, Z - порядковый номер элемента;

б) номер периода соответствует числу энергетических уровней (электронных слоев) в атомах элементов данного периода;

в) номер группы соответствует числу электронов на внешнем уровне для элементов главных подгрупп и максимальному числу валентных электронов для элементов побочных подгрупп.

В свете строения атома можно объяснить причины изменения свойств химических элементов и образованных ими веществ. В периоде с увеличением зарядов атомных ядер элементов (слева направо) металлические свойства ослабевают, а неметаллические усиливаются в силу того, что:

а) возрастает число электронов на внешнем уровне атома;

б) число энергетических уровней в атомах в пределах периода остается постоянным;

в) уменьшается радиус атомов.

В группах (главная подгруппа) с увеличением зарядов атомных ядер элементов (сверху вниз) металлические свойства усиливаются, неметаллические ослабевают. Это объясняется тем, что

Число электронов на внешнем уровне атомов остается одинаковым;

Увеличивается число энергетических уровней в атоме;

Увеличивается радиус атомов.

В больших периодах такие изменения происходят медленнее, так как, начиная с третьего элемента, у атомов достраивается не внешний энергетический, а предвнешний уровень с 8 до 18 электронов (у элементов побочных подгрупп), и лишь затем заполняется внешний уровень с 2 до 8 электронов (у элементов главных подгрупп).

В «сверхбольших» периодах (шестом и седьмом, незавершенном) эти изменения происходят еще медленнее, так как у лантаноидов и актиноидов достраивается не внешний предвнешний уровень, а третий снаружи уровень - с 18 до 32 электронов. Поэтому свойства этих элементов будут так похожи на свойства элементов Lа и Ас, а также сходны между собой. Это объясняется тем, что свойства химических элементов и образуемых ими веществ зависят в первую очередь от строения внешнего энергетического уровня атомов, меньше - от строения предвнешнего и почти не зависят от строения внутренних уровней.

Природа каждого химического элемента, то есть определенные, присущие только ему свойства атомов, простых веществ, соединений зависит прежде всего от заряда ядра его атомов. Заряд обусловливает и строение электронной оболочки атома. Но величины зарядов ядер атомов химических элементов в Периодической системе Д. И. Менделеева изменяются монотонно - увеличиваются от +1 у водорода до +110 у элемента № 110, поэтому прямой причиной периодического изменения свойств элементов это явление быть не может.

Причина периодичности - изменение строения внешних электронных слоев атомов. Так, у всех щелочных металлов внешний энергетический уровень занят одним в-электро-ном, поэтому их свойства так похожи. Но они не одинаковы, степень их проявления разная, потому что этот единственный внешний электрон находится на разном удалении от ядра у атомов каждого из щелочных металлов:


Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от строения внешних электронных слоев атомов.

Более полные сведения о горизонтальной и вертикальной зависимостях свойств атомов, простых веществ и соединений, образованных химическими элементами, представлены в таблице 6.

Таблица 6 Изменение свойств атомов, простых веществ и соединений химических элементов


Значение Периодического закона и Периодической системы химических элементов Д. И. Менделеева

Д. И. Менделеев писал: «До периодического закона элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая закономерность первая дала возможность видеть не открытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

С открытием Периодического закона химия перестала быть описательной наукой - она получила инструмент научного предвидения. Этот закон и его графическое отображение - таблица Периодической системы химических элементов Д. И. Менделеева - выполнили все три важнейшие функции теоретического знания: обобщающую, объясняющую и прогностическую. На их основе ученые:

Систематизировали и обобщили все сведения о химических элементах и образуемых ими веществах;

Дали обоснование различным видам периодической зависимости, существующим в мире химических элементов, объяснив их на основе строения атомов элементов;

Предсказали, описали свойства еще не открытых химических элементов и образованных ими веществ, а также указали пути их открытия.

Систематизировать и обобщить сведения о химических элементах пришлось самому Д. И. Менделееву, когда он открывал Периодический закон, строил и совершенствовал свою таблицу. Причем ошибки в значениях атомных масс и наличие не открытых еще элементов создавали дополнительные трудности. Но великий ученый был твердо уверен в истинности открытого им закона природы. Основываясь на сходстве в свойствах и веря в правильность определения места элементов в таблице Периодической системы, он существенно изменил принятые в то время атомные массы и валентность в соединениях с кислородом у десяти элементов и «подправил» их еще у десяти других. Восемь элементов он разместил в таблице вопреки принятым в то время представлениям об их сходстве с другими. Например, таллий он исключил из естественного семейства щелочных металлов и поместил в третью группу согласно проявляемой им высшей валентности; бериллий с неверно определенной атомной массой (13) и валентностью III он перевел из третьей группы во вторую, изменив его атомную массу на 9 и высшую валентность на II.

Большинство ученых восприняли поправки Д. И. Менделеева как научное легкомыслие, необоснованную дерзость. Периодический закон и таблица химических элементов рассматривались как гипотеза, то есть предположение, нуждающееся в проверке. Ученый понимал это и именно для проверки правильности открытого им закона и системы элементов подробно описал свойства не открытых еще элементов и даже способы их открытия, исходя из предполагаемого места в системе. По первому варианту таблицы он сделал четыре прогноза (галлий, германий, гафний, скандий), а по усовершенствованному, второму - еще семь (технеций, рений, астат, франций, радий, актиний, протактиний).

За период 1869-1886 гг. были открыты три предсказанных элемента: галлий (П. Э. Лекок де Буабодран, Франция, 1875 г.), скандий (Л. Ф. Нильсон, Швеция, 1879 г.) и германий (К. Винклер, Германия, 1886 г.). Открытие первого из этих элементов, подтвердившее правильность прогноза великого русского ученого, вызвало у его коллег только интерес и удивление. Открытие же германия стало подлинным триумфом Периодического закона. К. Винклер писал в статье «Сообщение о германии»: «Не подлежит больше никакому сомнению, что новый элемент есть не что иное, как предсказанный Менделеевым за пятнадцать лет до этого экасилиций. Ибо едва ли может быть дано более убедительное доказательство справедливости учения о периодичности элементов, чем воплощение бывшего до сих пор гипотетическим экасилиция, и оно представляет собой поистине нечто большее, чем простое подтверждение смело выдвинутой теории, - оно означает выдающееся расширение химического поля зрения, могучий шаг в области познания».

На основе закона и таблицы Д. И. Менделеева были предсказаны и открыты благородные газы. И сейчас этот закон служит путеводной звездой для открытия или искусственного создания новых химических элементов. Например, можно утверждать, что элемент с № 114 будет похож на свинец (экасвинец), а № 118 будет благородным газом (экарадон).

Открытие Периодического закона и создание таблицы Периодической системы химических элементов Д. И. Менделеевым стимулировало поиск причин взаимосвязи элементов, способствовало выявлению сложной структуры атома и развитию учения о строении атома. Это учение, в свою очередь, позволило вскрыть физический смысл Периодического закона и объяснить расположение элементов в Периодической системе. Оно привело к открытию атомной энергии и использованию ее для нужд человечества.



Загрузка...

Последние статьи

Реклама