emou.ru

Водородная связь примеры. Примеры соединений с водородной связью. Водородная связь в полимерах

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

ім. В.Н. Каразіна

Кафедра хімічного матеріалознавства

ВОДНЕВИЙ ЗВ"ЯЗОК В ДИМЕРІ HF

Курсова робота

студента гр. Х- 134

хімічного факультету

КОЛІСНИКА ОЛЕКСІЯ ВАСИЛЬОВИЧА

Науковий керівник

к.х.н., доцент

В.В. Іванов

В этом случае он накладывается на ориентацию, вызывая увеличение дипольного момента молекулы. Эффект индукции зависит от температуры, но сильно зависит от расстояния между молекулами, дипольного момента полярной молекулы и способности неполярного поляризации. Третий, дисперсионный эффект относится к взаимодействию между неполярными молекулами, поскольку они имеют движущиеся электроны. Электронное равновесие в молекуле может быть нарушено. Таким образом, мгновенные диполи встречаются и даже существуют для бесконечно короткого замыкания, им удается индуцировать дипольный момент в соседних частицах.

ХАРКІВ 2010

введение

Интерес к олигомерам фторида водорода (димеру, тримеру) в последние десятилетия поистине велик. Объясняется это прежде всего той ролью, которую играет водородная связь при интерпретации, моделировании и прогнозировании свойств огромного класса веществ, представляющих непосредственный практический интерес (достаточно вспомнить о воде). Ассоциаты молекул фторида водорода рассматриваются как наиболее простые комплексы, компоненты которых удерживаются с помощью водородных связей, а димер (HF) 2 стоит первым в этом ряду.

Таким образом, реализуется импульсное дипольное взаимодействие с мгновенным диполем. И хотя полный дипольный момент молекулы равен 0, эти мгновенные взаимодействия происходят непрерывно и приводят к сильным силам притяжения. Важной особенностью дисперсионных сил является их универсальность.

Помимо молекул они могут происходить между одними и теми же или разными частицами, атомными группами в молекуле и т.д. Вода имеет одну из самых высоких частей. постоянная между жидкостями. Диэлектрическая проницаемость воды увеличивается до -70 С, затем уменьшается. Модели с фиксированным зарядом не допускают изменения дипольного момента. Разработка моделей поляризационных вод.

Сейчас много известно о структуре димера фторида водорода по результатам экспериментальных исследований методами молекулярной спектроскопии и в газовой фазе, и в инертных средах матриц благородных газов. В последнем случае используется прием, позволяющий отделить интересующее соединение от других молекул инертным растворителем, например аргоном, чтобы предотвратить химические реакции или комплексообразование с другими частицами. По результатам этих исследований и был сделан вывод о стабильности соединения (HF) 2 и определены многие его параметры. Строение комплекса (HF) 2 в настоящее время изучают и теоретически методами компьютерного моделирования, причем предсказания теории претендуют на точность, вполне сопоставимую с экспериментальной.

Более высокие вычислительные требования. Растворители взаимодействуют сильнее, чем белки. Связанные молекулы воды часто имеют свойства, отличные от воды в окружающем растворителе. Слабые связывающие взаимодействия Повторение Что такое атом? Повторить повторение Что такое атом? Атом - наименьшая частица материи, химически неделимая. Он состоит из атомного ядра, содержащего протоны и нейтроны.

Типы молекул, веществ и их связей в организмах. Организмы состоят из молекул разных веществ. Отдельные вещества образуют сам организм из других веществ. Это самое сильное межмолекулярное взаимодействие. Химическая связь - если атомы элементов неспособны окончательно отделить существование - связывание атомов с более крупными единицами является большей стабильностью, чем свободные атомы - атомы разделяются связыванием электронов. Условия.

1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Водородная связь

Представления об участии атома водорода в образовании двух химических связей (а не одной, как соответствовало бы его классической валентности) появились в конце XIX века (Ильинский, 1887 год) и начале XX века (Мур и Винмил, 1912 год; Хаггинс, 1919 год). Дальнейшее достаточно быстрое накопление экспериментальных данных, для объяснения которых эти представления оказались полезными, позволило не только привыкнуть к самому факту наличия водородной связи, но и дать некоторые разъяснения, по каким причинам она возникает, почему такого типа связь наиболее широко распространена именно для водородсодержащих соединений и не столь часто встречается у соединений, в которых соответствующие атомы водорода заменены на другие, например на атомы щелочных металлов .

Химическая связь Свободные атомы в природе являются исключительно исключительными. Атомные элементы элементов пытаются взаимно слиться и создать молекулы элементов или соединений. Атомы химически связаны в молекулах. Химическое связывание Некоторые небольшие повторения Некоторые небольшие повторения Что такое атом? Маленький повтор Что такое атом? Он состоит из атомного ядра, содержащего. Йозеф Корманик Химические примеры.

Орбиталы в многоэлектронных атомах Электроны притягиваются к ядру, но также отталкиваются. Отталкивающие силы, вызванные другими электронами, защищают привлекательный эффект атомного ядра. Геометрия молекул Формулы Льюиса предоставляют информацию о том, какие атомы связаны связью и тем, что связано. Геометрическое расположение молекулы характеризуется: длиной связей.

Водородную связь относят к числу слабых химических взаимодействий. Энергия водородной связи обычно лежит в пределах от 10 до 30 кДж/моль, хотя иногда она достигает и сотен кДж/моль. Энергии обычных химических связей (ковалентных и ионных), как правило, заметно превышают 150 кДж/моль, достигая, например, для молекул азота или оксида углерода величин 900 кДж/моль и более . Тем не менее за последние полвека появилось четкое понимание исключительной роли слабых взаимодействий, прежде всего роли водородных связей в стабилизации конденсированных состояний многих простых молекулярных систем, например воды, фтороводорода, и, что самое существенное, в стабилизации биополимеров (нуклеиновых кислот, белков).

Органическая химия Год обучения - гастрономия. Химические связи - это силы когезии, действующие между отдельными атомами или ионами в молекулах. Валанциальные электроны и химическая связь На внешнем энергетическом уровне находятся валентные электроны, которые могут участвовать в образовании химических связей. Валентные электроны часто представлены точками вокруг.

Молекулярная физика работает на основе кинетической теории веществ и статистики. Термодинамика изучения тепловых явлений и машин, не связанных с отдельными частицами. Молекулярная физика на основе. Геномные базы данных Кластеризация белковых последовательностей Ивана Рудольфова руководитель: док. Содержание Протеины Источники данных Прогнозирование структуры белка Задачи диссертации Входные данные.

Водородные связи позволяют полимерным цепям соединяться в специфические трехмерные структуры, приобретающие при этом функциональную биологическую активность, структуры, с одной стороны достаточно прочные (за счет образования большого числа водородных связей), а с другой - достаточно чутко реагирующие на изменение внешних условий (например, приближение той или иной молекулы) именно из-за того, что эти взаимодействия являются слабыми. Разрыв таких связей лишает белки или нуклеиновые кислоты их биологических функций. Отсюда, в частности, видна исключительно важная роль водородных связей, которую они играют в биологических процессах на молекулярном уровне . Понятно и то важное значение исследований и понимания природы водородных связей, которым в последние время было уделено столь пристальное внимание ученых различных направлений.

Структура атома Почему это важно? Окончательная интерпретация всех химических явлений. Она должна основываться на структуре атомов. Атомное ядро ​​и его устойчивость. Атом - наименьшая материальная и химически неделимая частица. Он состоит из ядра, содержащего протоны и нейтроны, и электронной оболочки. Элементарные частицы протонных нейтронов.

Точно так же молекула, в которой число атомов больше единицы, должно соответствовать уменьшению потенциальной области. Это прямое взаимодействие свободно по пространству, поэтому химические связи не затрагиваются как косвенное спин-спиновое взаимодействие.

Долгое время доминировала сугубо электростатическая точка зрения: атом водорода, образующий такую связь, обычно связан с достаточно хорошо выраженным электроотрицательным атомом, то есть атомом с высоким сродством к электрону, из-за чего электронная плотность на атоме водорода понижена по сравнению с плотностью изолированного атома водорода. Следовательно, суммарный электрический заряд на таком атоме оказывается положительным, что и позволяет атому взаимодействовать еще с одним электроотрицательным атомом. Такое взаимодействие с каждым из двух атомов, как правило, слабее взаимодействия с тем атомом, с которым атом водорода был соединен первоначально. Образование подобной связи с третьим и т. д. атомом практически оказывается невозможным из-за того, что начинает доминировать электростатическое отталкивание электроотрицательных атомов друг от друга . Современные расчеты показывают, однако, что суммарный заряд на атоме водорода, участвующем в образовании водородной связи, практически не меняется по сравнению с зарядом в мономерной молекуле, что говорит о том, какую заметную роль в образовании водородной связи должны играть поляризация, перераспределение электронного заряда в отдельных областях пространства.

Назовите не менее трех групп веществ, которые участвуют в строительстве. Это аналитический метод, основанный на поглощении радиочастотного излучения образцом, помещенным в сильное магнитное поле. Органическая химия Год обучения - косметологические услуги.

Варик и др.: Обзор химии средней школы. Наиболее устойчивая электронная конфигурация атомов. Химическая связь представляет собой химическую связь характеристик химической связи как связь представления химической связи ковалентной и координатной связи σ и π простая, двойная и тройная связующая полярность.

В настоящее время интерпретация образования химической связи дается, как правило, на языке теории молекулярных орбиталей, то есть в предположении, что для описания электронной структуры молекулы достаточно хорошим является приближение, когда каждый электрон задается своей одноэлектронной функцией, своей орбиталью.

Общей причиной возникновения водородной связи, как, впрочем, и других выделяемых обычно типов химических связей, является главным образом электростатическое, кулоновское взаимодействие разноименных зарядов тех частиц, которые образуют молекулу. Правда, это взаимодействие отличается от того, которое встречается в классической теории, поскольку оно не определяется только лишь плотностью распределения положительного и отрицательного зарядов, а выражается более сложным образом с помощью волновых функций, определяющих состояния молекулярной системы . Поэтому естественно стремление найти некоторые более простые образы, которые давали бы возможность наглядно представить себе, как же все-таки образуется химическая связь.

Именно, молекула, в которой число атомов больше единицы, должно. Основы молекулярной физики и термодинамики Молекулярная физика является частью физики, которая исследует свойства веществ, основанные на их внутренней структуре, движении и взаимной силе частиц, из которых они являются.

Анимированная химия Топ-Хит Аналитическая химия Неорганический анализ Анион Доказательство Катион доказательство Доказательство кислорода Доказательство воды Гравиметрический анализ Масс-спектроскопия Химический анализ Ядерный магнитный. Физика - естественная наука, которая исследует и описывает закономерности природных явлений.

Одно из таких представлений базируется на анализе перераспределения электронной плотности при образовании системы: увеличение электронной плотности в пространстве между ядрами ведет к усилению электростатического взаимодействия между электронами в этом пространстве и ядрами, что сопровождается, в свою очередь, понижением энергии системы .

По числу атомов мы говорим о двух, трех - и более атомных молекулах. Токсикодинамика Токсикодинамика взаимодействия ксенобиотиков с сайтом-мишенью Биологический ответ И ксенобиотические эффекты на организм Токсический эффект Неспецифический. Номенклатура альдегидов: систематическое название - окончание.

Полупроводники. Полупроводники представляют собой кристаллические или аморфные вещества, электрическая проводимость которых лежит между электропроводностью металлов и изоляторов и зависит от температуры или падающего оптического излучения. Транспортные явления в газах Реальные газы Градиенты фазы Жидкости Плотность потока Мы изучали только системы, которые находились в равновесии, если система не находится в силе, плотность частиц одинакова.

Действительно, такое повышение электронной плотности должно сопровождаться ее понижением в других областях пространства и, следовательно, вклад в энергию от этих областей должен уменьшаться . Кроме того, электроны, находясь в сравнительно малой указанной области пространства, должны сильнее отталкиваться друг от друга, а потому энергия также должна возрастать.

Учебная программа по физике: физическая химия Область исследования: прикладная химия Специализация: форма обучения: общее количество классов в исследовании: аналитическая химия Химическая технология Защита окружающей среды. Жидкая структура и свойства Жидкие свойства, Жидкий поверхностный слой Жидкости на поверхности твердого тела и жидкости Капиллярные явления, Расширение теплового объема Жидкие свойства Жидкая форма.

Вот как будут написаны книги по химии и, возможно, некоторые страницы в физическом буклете. Предполагалось, что Хобза был осужден за свою теорию нерегулярных водяных блоков, потому что он выступал против профессиональных публикаций. Недавно он высоко оценил чешские науки - еврейскую голову.

Анализ изменений распределения электронной плотности - полезный способ выяснения того, что происходит при возникновении химической связи. Простые представления не всегда оказываются работоспособными. Так, в настоящее время известны молекулы, в которых при образовании химической связи не происходит увеличения электронной плотности в пространстве между ядрами и тем не менее химическая связь вполне реально существует .

То, что на самом деле происходит с этим новым, связыванием сырой воды, неясно из доступных источников. Профессор сам обманывает перед журналистом, что это открытие произошло случайно, и ему потребовалось несколько лет, чтобы найти смелость опубликовать эту информацию.

В мире молекул и теоретической химии это похоже на дом, но для смертного смертного его работа похожа на испанскую деревню. Прежде чем это произойдет, давайте посмотрим, что такое настоящие водные блоки. Это тип слабосвязывающего взаимодействия между молекулами, который может быть применен в рамках двух частей одной молекулы. Он сильнее большинства других межмолекулярных сил, но примерно в 10 раз меньше ионных или ковалентных связей. Возникают водородные связи между атомом водорода и непористой электронной парой сильно электроотрицательного атома.

Водородная связь по своему происхождению не представляет собой нечто отличающееся от того, что характерно для химических связей вообще. Ее определяют главным образом поляризация электронного распределения в мономерных звеньях (в общем случае в молекулах, образующих такую связь) и отличная от мономерных звеньев динамика колебательного движения атомов в водородно-связанном фрагменте. Пристальное внимание к изучению систем с водородными связями давно уже определяется не спецификой этой связи как таковой, а широкой распространенностью водородных связей, особенно в биологических объектах, и той важной ролью, которую они играют в биополимерах и жизненно важных процессах с их участием .

Поскольку только один электрон имеет атом водорода, связывается с электроотрицательным элементом, чтобы обнаружить атомное ядро. Полученный положительный заряд на атоме воды может улавливать свободные электронные составляющие окружающих молекул. Образование гидридной связи возможно только с очень электроотрицательными элементами, такими как фтор, кислород и азот. Только эти три элемента способны истощать достаточную плотность электронов от атома водорода в достаточном количестве.

Наиболее частым примером может быть гидроксигруппа. Кислород сильно электроотрицательный, т.е. что он притягивает 2 электрона к воде друг к другу. Ниже приведены последние примеры водородных слоев между боковыми группами молекул. Толщина связи связана с энергией связи, температуры и давления.

1.2 Примеры соединений с водородной связью

Во многих случаях, когда имеется сильная связь между молекулами или разными группами одной и той же молекулы, эту связь можно приписать атомам водорода, проявляющим двухвалентный характер. Таковы, например, димеры алифатических кислот, ион дифторида

и димер HF, структура которых приведена на рисунке 1.1 .

Рисунок 1.1 Некоторые примеры структур с водородной связью

Водородная связь вызывает увеличение межмолекулярных аттрактантов, что сильно влияет на увеличение значения некоторых физико-химических свойств. Гидрантные мосты не являются химическими связями, они являются лишь слабыми взаимодействиями, поэтому единственный мостик на водной основе полностью нестабилен при нормальных температурах. В биологических молекулах это особенно важно для ориентации молекул в их пространственном расположении и может значительно стабилизировать молекулы в том случае, если в молекуле присутствует большое количество водяных блоков.

Водород служит в качестве связующего атома в другом важном классе соединений – бороводородах. Простейшим членом этого семейства является диборан (В 2 Н 6). Однако бороводороды обычно не рассматривают в качестве соединений с водородной связью, так как их нельзя разбить на фрагменты, представляющие собой стабильные молекулы . Рассмотрим эти соединения лишь для того, чтобы сопоставить их с комплексами с водородной связью.

Бороводороды были названы электронодефицитнымимолекулами (термин электронодефицитный в применении к бороводородам не совсем оправдан, так как во всех случаях электронов достаточно для заполнения всех связывающих молекулярных орбиталей), так как они не имеют достаточно электронов для образования того количества двухэлектронных связей, которое, по-видимому, подразумевается их молекулярной геометрией. Диборан имеет восемь связей В–Н, но только четырнадцать валентных электронов. Расчеты на основе метода молекулярных орбиталей показывают, что концевые связи представляют собой нормальные двухэлектронные связи, а мостиковые связи следует описывать как трехцентровые двухэлектронные связи .

Описание на основе метода молекулярных орбиталей иона дифторида полностью отличается от описания диборана, поскольку для образования мостиковых связей здесь имеются четыре электрона. Равновесная конфигурация молекулы линейная, причем водород находится посредине отрезка F–F. Две наивысшие заполненные молекулярные орбитали образованы в основном 2p σ -орбиталями фтора п ls -орбиталями водорода с некоторой добавкой 2s -орбиталей фтора. Низшая из двух орбиталей имеет симметрию σ g и является связывающей для всех трех атомов. Более высокая орбиталь σ u (ее узел приходится на атом водорода) – разрыхляющая по отношению к атомам фтора. Однако атомы фтора достаточно удалены друг от друга, так что разрыхляющий эффект мал, и орбиталь σ u имеет отрицательную энергию (т. е. связывает электроны), что обусловлено большой электроотрицательностью атома фтора .

Можно преобразовать σ g - и σ u -орбитали в эквивалентные орбитали θ 1 = σ g + σ u и θ 2 = σ g σ u , локализованные на двух связях F–Н, что демонстрирует отличие от мостиков в бороводородах, орбитали которых не могут быть локализованы на связях .

Ион дифторида не типичен для соединений с водородными связями в том отношении, что атом водорода расположен посредине между двумя тяжелыми атомами. Обычно энергии водородных связей намного меньше, чем для иона дифторида, а водород более тесно связан с одним из атомов, чем с другим, как в димере муравьиной кислоты (рис. 1.1). В действительности геометрия двух компонентов, составляющих комплекс, немного отличается от их геометрии в изолированных состояниях .

Таблица 1.1 Энергии димеризации некоторых газофазных димеров с водородной связью

1.3 Димер HF

1.3.1 Геометрическая конфигурация, колебания, энергия связи

На рисунке 1.2 изображена равновесная геометрическая конфигурация комплекса, одновременно и понятная и непредсказуемая. Все четыре атома располагаются в одной плоскости. Расстояния между атомами фтора и водорода, относящиеся к составным (мономерным) частям комплекса F b –H b и F f –H f , равны соответственно 0,922 и 0,920 Å и мало отличаются от равновесного расстояния 0,917 Å в молекуле HF. Расстояние между атомами H b …Ff равно 1,82 Å, что характерно для водородной связи. Расположение всех трех участников водородной связи F b –H b …F f близко к линейному. Это все предсказуемые черты межмолекулярного комплекса с водородной связью. Непредсказуемыми из простых принципов оказываются значения углов θ 1 = 7 ̊ (между направлениями F b F f и F f H b) и θ 2 = 69 ̊ (F b F f и F f H f).

Рисунок 1.2 Равновесная геометрическая конфигурация комплекса (HF) 2

Рассмотрим, как были получены эти результаты. Олигомеры фторида водорода (HF) n образуются в распространяющейся со сверхзвуковой скоростью струе газа, истекающей из узкого сопла контейнера с веществом HF, находящегося при низких температурах. Контроль состава газа осуществляют масс-спектральными методами , что позволяет различить компоненты газа по массе, то есть различить олигомеры с разными значениями n. Подбором условий можно добиться того, чтобы исследованию подвергались именно димерные комплексы (HF) 2 .

В камере спектрометра молекулярный пучок подвергается действию электромагнитного излучения от источника определенного интервала длин волн (или частот) и фиксируется спектр исследуемой системы. Спектральные линии в микроволновом диапазоне, как сказано выше, несут информацию о вращении молекулы, и относительное расположение полос зависит от геометрической конфигурации системы. Интерпретация полос в диапазоне 19 300-19 340 МГц в рамках модели полужесткого волчка позволила установить соответствие спектра структуре, показанной на рис. 1, с расстоянием между атомами фтора Fb-Ff 2,72 ? 0,03 Б и углами q1 = 10 ? 6? и q2 = 63 ? 6?. Близкие значения углов были независимо получены и в другой лаборатории: q1 = 7 ? 3? и q2 = 60 ? 2?.

В следующих сериях экспериментов исследовали инфракрасный (ИК) диапазон спектра. Согласно основным моделям теории строения молекул, расположение спектральных линий в этой области несет информацию о колебаниях частиц молекулы около положения равновесия, в данном случае о небольших периодических смещениях атомов от позиций, показанных на рис. 1. Для каждой молекулы число таких колебаний однозначно определяется числом атомов и для комплекса (HF)2 оно равно шести. В молекулярной спектроскопии принято выражать частоты колебаний в единицах, показывающих число полных волн данной длины, укладывающихся на расстоянии в 1 см, и соответственно говорят о величинах частот, выраженных в обратных сантиметрах (см-1), или, что то же самое, в волновых числах. Хотя в каждом колебании с данной частотой принимают участие в той или иной мере все атомы молекулы, опять-таки в рамках модельных представлений можно отнести колебание (и соответственно полосу в ИК-спектре) к выделенной группе атомов. Во многих случаях такому подразделению способствуют значительные различия в частотах колебаний, как в нашем примере (HF)2 .

Оцененные по измерениям спектральных полос в газовой фазе и инертных матрицах частоты колебаний димера фторида водорода явно разделяются на внутримолекулярные (имеются в виду колебания молекул, при ассоциации которых образовался комплекс) с величинами около 4000 см-1 и межмолекулярные с величинами менее 500 см-1. Высокие частоты относятся к колебаниям групп Ff-Hf (3931 см-1) и Fb-Hb (3868 см-1). Низкие частоты (475, 395, 161 и 125 см-1) характеризуют колебания, меняющие относительную ориентацию фрагментов Ff-Hf и Fb-Hb , выход атомов из плоскости и изменения расстояния Fb_Ff .

Интенсивность ИК-линий можно связать (снова в рамках определенной модели молекулы) с такой важнейшей характеристикой комплекса, как энергия диссоциации на две мономерные молекулы. Эта же величина определяет энергию связи комплекса. По экспериментальным данным, она составляет 19,35 ? 0,71 кДж/моль. Таким образом, расшифровка спектров приводит к набору молекулярных постоянных - расстояниям между атомами, углам, частотам колебаний, энергиям, которые достаточно полно характеризуют строение молекулярной системы.

Обратимся теперь к теоретическому подходу. Все построения основаны на модели, согласно которой комплекс (HF)2 есть система четырех ядер (двух протонов и двух ядер F9 +) и 20 электронов, то есть точечных частиц, попарно взаимодействующих по закону Кулона. Больше никакой исходной информации в модель не закладывается, что и делает такие расчеты свойств молекул столь привлекательными. Для этой конкретной системы четырех ядер и 20 электронов методами вычислительной квантовой химии рассчитывают поверхность потенциальной энергии - зависимость энергии от координат ядер . Конечно, необходим доступ к компьютерам и достаточно сложному программному обеспечению, однако сейчас для такой системы, как (HF)2 , очень хорошие результаты можно получать с персональным компьютером типа "Pentium" за вполне реальное время, хотя требуются терпение и определенные навыки.

Одним из результатов компьютерного расчета является массив точек: энергия как функция в данном случае шести внутренних координат комплекса (HF)2 (число внутренних координат совпадает с числом колебательных степеней свободы молекулярной системы). Рельеф этой шестимерной поверхности достаточно сложный, с минимумами, максимумами, седловыми точками. Представление о двумерном сечении потенциальной поверхности основного электронного состояния в зависимости от угловых координат q1 и q2 дает рис. 2, причем все остальные геометрические переменные подстроены так, чтобы значения энергии для них были минимальными. На рис. 2 изображены рассчитанные контуры изоэнергетических линий, за нуль отсчета принята энергия разделенных молекул мономеров HF, синим цветом отмечены области отрицательных энергий, где комплекс (HF)2 существует как единое целое, красным - область положительных энергий. Изоэнергетические контуры сгущаются около стационарных точек - минимумов, седловых точек. Координаты точки наиболее глубокого минимума (темно-синий цвет на рис. 2 около | q1 | = 7?, q2 = 69?) определяют равновесную геометрическую конфигурацию комплекса. Рис. 2 симметричен относительно диагонали поля графика, что отражает эквивалентность двух структур комплекса

На рис. 1 показаны те значения координат, которые были получены в наиболее совершенном в настоящее время квантово-химическом расчете. Выше приведены величины, определенные из экспериментов, и согласие результатов обоих подходов к исследованию комплекса (HF)2 можно считать великолепным. Из расчета определяются и энергия связи по разности энергий в равновесной геометрической конфигурации (HF)2 и энергии двух невзаимодействующих молекул HF. Наилучшее полученное значение (19,23 кДж/моль) также прекрасно согласуется с экспериментально определенной энергией (19,35 ? 0,71 кДж/моль).

Еще одна серия экспериментальных данных позволила определить частоты колебаний комплекса. Решение колебательной задачи представляет следующий этап моделирования структуры молекул после построения поверхности потенциальной энергии. В простейшем приближении необходимо определить кривизну потенциальной поверхности по отношению ко всем внутренним координатам около положения минимума и оценить тем самым коэффициенты жесткости пружинок, моделирующих колебания вдоль связей и углов молекулы. Совокупность коэффициентов жесткости, рассчитываемых как вторые производные энергии по координатам, образует силовое поле молекулы. Далее по известным массам атомов, равновесным геометрическим параметрам и силовому полю без особого труда вычисляется набор частот колебаний. Для комплекса (HF)2 такая задача решалась неоднократно, и вычисленные частоты хорошо совпадают с экспериментальными.

Список литературы

1. Водородная связь / Ред. Н. Д. Соколов. М.: Наука, 1989.

2. Овчинников Ю. А. Биоорганическая химия. – М.: Просвещение, 1987. – 815 с.: ил.

3. Витковская Н. М. Метод молекулярных орбиталей: Основные идеи и важные следствия // Соросовский Образовательный Журнал. 1996. № 6. С. 58-64.

4. Степанов Н. Ф. Химическая связь в простых двухатомных молекулах // Соросовский Образовательный Журнал. 1998. № 10. С. 37-43.

5. Степанов Н. Ф. Потенциальные поверхности и химические реакции // Соросовский Образовательный Журнал. 1996. № 10. С. 33-41.

6. Маррел Дж., Кеттл С.,Теддер Дж. Химическая связь. М.: Мир, 1980. 384 с.

7. Немухин А. В. Димер фторида водорода: Строение простейшего комплекса с водородной связью // Соросовский Образовательный Журнал. 1998. № 7. С. 65-69.

8. Вилков Л. В. Физические методы исследования в химии // Соросовский Образовательный Журнал. 1996. № 5. С. 35-40.

9. Некрасов Б. В. Общая химия. М.: Госхимиздат, 1962. 973 с.

10. Салем Л.Электроны в химических реакциях. М.: Мир, 1985. 285 с.

11. Хобза П., Заградник Р. Межмолекулярные комплексы. М.: Мир, 1989. 376 с.

12. Немухин А. В., Вейнхольд Ф. Концепция Льюиса в современной квантовой химии // Рос. хим. журн. (Журн. Рос. хим. о-ва им. Д.И. Мендделеева). 1994. Т. 38. С. 5-11.

13. Немухин А. В. Многообразие кластеров // Соросовский Образовательный Журнал. 1996. Т. 40. С. 48-56.

Введение

Помимо различных гетерополярных и гомеополярных связей, существует еще один особый вид связи, который в последние два десятилетия привлекает все большее внимание химиков. Это так называемая водородная связь. Оказалось, что атом водорода может образовывать связь между двумя электроотрицательными атомами (F, О, N, реже Сl и S). Известны случаи, когда эту связь образует водородный атом, связанный с атомом углерода в соединениях типа НСХ3, где X - электроотрицательный атом или группа (например, в HCN, фторуглеводородах). Хотя в настоящее время природа водородной связи еще до конца не выяснена, однако определённое представление о ней уже можно составить.

Водородная связь образуется между электроотрицательными атомами, из которых хотя бы один имеет свободную электронную пару, например:

Водородная связь - глобальное явление, охватывающее всю химию.

1. Сущность и природа водородной связи

Первую научную трактовку водородной связи дали в 1920 году В. Латимер и В.Родебуш, работавшие в лаборатории Г. Льюиса, основоположника учения о ковалентной связи, автора теории кислот и оснований и плодотворной в органической химии концепции обобщенной электронной пары. Причину особых физических и химических свойств воды авторы объясняли наличием водородной связи, сущность которой состоит во взаимодействии атома водорода одной молекулы с электронной парой атома кислорода другой молекулы. При этом атом водорода становится одновременно связанным с двумя атомами кислорода ковалентной и водородной связью:

За все последующее время вплоть до наших дней не изменился принципиальный подход к трактовке водородной связи, концепция неподелённого протона осталась незыблемой. Длительные и интенсивные исследования позволили уточнить влияние структуры соединений на склонность к образованию Н-связей, внесена определенная ясность в электронную природу последних, найдены надежные методы их идентификации. А главное - сделаны широкие обобщения по оценке влияния Н-связей на физические и химические свойства веществ. Бутлеровский тезис “структура определяет свойства” раскрывается с учетом возможности образования Н-связи и ее вклада в конкретные свойства. Ниже представлен итоговый материал по изучению вопросов, связанных с проблемой водородной связи.

По современной терминологии, образование водородной связи наступает при взаимодействии протонодонора (кислоты Бренстеда, электроноакцептора) с протоноакцептором (основанием, электронодонором). Для схематичного представления обсуждаемых процессов молекулу протонодонора обозначим А-Н (а для случаев, когда необходимо указать природу атома, ковалентно связанного с водородом, R-X-H). Протоноакцептор обозначим: В (символическое обозначение как основания в целом, так и атома с неподеленной парой электронов) или B-Y. С учетом принятой символики водородную связь можно представить как невалентное взаимодействие между группой Х-Н одной молекулы и атомом В другой, в результате которого образуется устойчивый комплекс А-Н…В с межмолекулярной водородной связью, в котором атом водорода играет роль мостика, соединяющего фрагменты А и В. Отметим, что до настоящего времени нет однозначного подхода, какую конкретно связь называть водородной. Большинство авторов к понятию водородной связи относят дополнительное взаимодействие, которое возникает между атомом водорода и электронодонором В, то есть связь Н…В. Другие авторы к понятию водородной связи относят всю цепочку Х-Н…В, то есть связь между атомами Х и В через водородный мостик. Ориентируясь на большинство, характеристики водородной связи (длина, энергия) будем относить к связи Н…В, сознавая, что образование последней не может не сказаться на состоянии ковалентной связи Х-Н.

На ранних этапах изучения водородной связи полагали, что водородный мостик образуется только между атомами с высокой электроотрицательностью (F, O, N). В последние десятилетия, когда в руках исследователей появилось более совершенное оборудование, круг атомов - партнеров по водородному связыванию значительно расширен (Cl, S и некоторые другие). В качестве атома Х может фигурировать любой атом, более электроотрицательный по сравнению с атомом водорода и образующий с последним обычную химическую связь (например, атом углерода). В роли акцептора атома водорода могут выступать как атомы с неподеленными парами электронов (в отдельных случаях даже аргон и ксенон), так и соединения, имеющие π -связи.

Рассмотрев природу соединений, потенциально способных к образованию Н-связи, легко убеждаемся, что образование водородной связи может быть представлено как кислотно-основное взаимодействие, определяющее первую стадию переноса протона при протолитических реакциях.

A-H + :BA-H…BA-…H-B + A- + HB +

Такие взаимодействия наблюдаются в растворах кислот. Когда же продукт А-Н не обладает выраженной кислотностью или при отсутствии соответствующего растворителя процесс кислотно-основного взаимодействия останавливается на стадии молекулярного комплекса.

Несмотря на всеобщее признание Н-связей, в литературе так и не сформировалось единой точки зрения на природу этого явления. Вопрос до сих пор продолжает оставаться дискуссионным. Прежде чем изложить современный взгляд на природу сил, обусловливающих образование водородных связей, отметим наиболее существенные экспериментальные факты, сопровождающие этот процесс.

I . При образовании водородных связей выделяется теплота - термохимическая мера энергии Н-связи. Эту характеристику используют для калибровки спектральных методов изучения водородных связей.

II . Расстояние между соседними атомами, участвующими в образовании водородной связи, значительно меньше суммы их ван-дер-ваальсовых радиусов. Так, в воде расстояние между атомами кислорода в системе О-Н…О составляет 0,276 нм. Если принять, что длина ковалентной связи О-Н равна 0,1 нм, то длина связи Н…О составит 0,176 нм, то есть она значительно (примерно на 70%) длиннее ковалентной связи между этими атомами. Тем не менее связь Н…О оказывается значительно короче суммы ван-дер-ваальсовых радиусов, составляющих для водорода и кислорода соответственно 0,12 и 0,14 нм. Последнее обстоятельство является од-
ним из критериев, указывающих на образование между молекулами водородных связей.

III . Водородная связь увеличивает длину связи Х-Н, что приводит к смещению соответствующей полосы валентных колебаний в ИК-спектре в сторону более низких частот. Метод ИК-спектроскопии является главным методом изучения водородной связи.

IV . При образовании водородной связи полярность связи Х-Н возрастает, что приводит к повышению дипольного момента молекулярного комплекса в сравнении с расчетными данными, полученными путем векторного сложения диполей молекул R-X-H и B-Y.

V . Протоны, участвующие в водородной связи, характеризуются более низкой электронной плотностью, поэтому они деэкранируются, что приводит к существенному смещению соответствующих резонансных сигналов в спектрах ЯМР 1 Н в слабое поле. Протонный магнитный резонанс наряду с ИК-спектрами является наиболее чувствительным к образованию Н-связи.

VI . Для межмолекулярных водородных связей обнаружено смещение кислотно-основного равновесия молекулярный комплекс ионная пара вправо при повышении полярности растворителя.

Кроме указанных фиксируются и другие структурные и спектроскопические особенности водородных связей, которые используются, с одной стороны, для идентификации последних, а с другой – в расшифровке их электронной природы. Так как водородная связь возникает только в том случае, если атом водорода связан с электроотрицательным атомом, то ранее предполагалось, что природа водородной связи сводится к диполь-дипольному взаимодействию типа R-X - d -H + d …B - d -Y, которое еще называют электростатическим взаимодействием. Такое предположение подкрепляется тем фактом, что наиболее прочные водородные связи образуются атомами водорода, связанными с наиболее электроотрицательными элементами. Более высокую прочность водородной связи по сравнению с неспецифическим диполь-дипольным взаимодействием (примерно в 10 раз) можно объяснить маленьким размером атома водорода, благодаря чему он может ближе подойти к другому диполю. Дипольная модель объясняет также линейную геометрию водородной связи, так как при линейном расположении атомов силы притяжения максимальны, а силы отталкивания минимальны.

Однако не все экспериментальные факты, фиксируемые при изучении водородных связей, можно объяснить исходя лишь из диполь-дипольного взаимодействия. Не удается заметить никакой закономерной зависимости между энергией водородной связи и дипольным моментом или поляризуемостью взаимодействующих молекул. Небольшая длина водородных связей свидетельствует о существенном перекрывании ван-дер-ваальсовых радиусов. А простая электростатическая модель не учитывает перекрывания волновых функций, перераспределения электронной плотности при сближении молекул. Решить эти вопросы можно, допустив, что водородная связь носит частично ковалентный характер за счет донорно-акцепторного взаимодействия электронодонора В с электоноакцептором А-Х-Н. Повышение электронной плотности на атоме Х происходит через посредника - водородный мостик. При этом допускается частичное заполнение несвязывающей орбитали атома водорода.

Таким образом, Н-связи образуются в результате одновременного проявления следующих сил: электростатического взаимодействия и переноса заряда. Квантово-химические расчеты показывают, что основной вклад вносит первая составляющая. В водородных связях, значительно отличающихся по энергетическим характеристикам, соотношение этих вкладов также изменяется. Есть и другие объяснения природы водородной связи, не получившие общего признания.

Заканчивая рассмотрение вопроса о природе Н-связи, можно отметить, что химику-практику легче признать существование этого феномена, чем объяснить его природу. Многообразие водородных связей является причиной отсутствия единого подхода к их трактовке. Трудно даже представить себе, что природу водородных связей в дифторид-анионе (FHF) - и в системе С-H…Cl можно объяснить с единых позиций. Одна из трудностей заложена в природе главного действующего лица - атома водорода, который не может иметь на внешней оболочке больше двух электронов. Поэтому концепция двухкоординированного атома водорода воспринимается неоднозначно. Скорее всего, единого подхода к объяснению природы Н-связи и не будет. Будет создана какая-то обобщающая модель, учитывающая вклад разных по природе сил, то есть значительно расширенный вариант того, что мы имеем в настоящее время.

2. Определение водородной связи

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O , N , F ) другой молекулы, называется водородной связью .

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF , H 2 O , NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O . Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O )n , где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также вследствие укрупнения их молекул. Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплементарности.

3. Виды водородной связи

Существует два вида водородной связи внутримолекулярная и межмолекулярная водородные связи. Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Это особенно характерно для многих органических соединений. Если же водородная связь образуется между атомом водорода одной молекулы и атомом неметалла другой молекулы (межмолекулярная водородная связь), то молекулы образуют довольно прочные пары, цепочки, кольца. Так, муравьиная кислота и в жидком и в газообразном состоянии существует в виде димеров:

а газообразный фтороводород содержат полимерные молекулы, включающие до четырех частиц HF. Прочные связи между молекулами можно найти в воде, жидком аммиаке, спиртах. Необходимые для образования водородных связей атомы кислорода и азота содержат все углеводы, белки, нуклеиновые кислоты. Известно, например, что глюкоза, фруктоза и сахароза прекрасно растворимы в воде. Не последнюю роль в этом играют водородные связи, образующиеся в растворе между молекулами воды и многочисленными OH-группами углеводов.

4. Энергия водородной связи

Существуют несколько подходов к характеристике водородных связей. Основной критерий – это энергия водородного связывания (R–X–HB–Y), которая зависит как от природы атомов Х и В, так и общего строения молекул RXH и BY. Большей частью она составляет 10–30 кДж/моль, но в некоторых случаях может достигать 60–80 кДж/моль и даже выше. По энергетическим характеристикам различают сильные и слабые водородные связи. Энергия образования сильных водородных связей составляет 15–20 кДж/моль и более. К ним относят связи О–HО в воде, спиртах, карбоновых кислотах, связи О–НN, N–HO и N–HN в соединениях, содержащих гидроксильные, амидные и аминные группы, например в белках. Слабые водородные связи имеют энергию образования менее 15 кДж/моль. Нижним пределом энергии водородной связи является 4–6 кДж/моль, например связи С–НО в кетонах, эфирах, водных растворах органических соединений.

Наиболее прочные водородные связи образуются в случаях, когда маленький водород (жесткая кислота) одновременно связан с двумя малыми по размеру сильно электроотрицательными атомами (жесткие основания). Орбитальное соответствие обеспечивает лучшее кислотно-основное взаимодействие и приводит к образованию более прочных водородных связей. То есть образование сильных и слабых водородных связей можно объяснить с позиций концепции жестких и мягких кислот и оснований (принцип Пирсона, принцип ЖМКО).

Энергия Н-связи возрастает с увеличением положительного заряда на атоме водорода связи Х-Н и с повышением протоноакцепторности атома В (его основности). Хотя образование водородной связи рассматривается с позиций кислотно-основного взаимодействия, однако энергия образования Н-комплексов нестрого коррелируется как со шкалой кислотности, так и со шкалой основности.

Подобная картина наблюдается и в случае меркаптанов и спиртов. Меркаптаны являются более сильными кислотами, чем спирты, однако более прочные ассоциаты образуют спирты. Причина таких кажущихся аномалий вполне объяснима, если учесть, что кислотность определятся величиной pКа по результатам полной схемы кислотно-основного взаимодействия (до образования сольватированных ионов), а образование молекулярного комплекса с Н-связью только первый этап этого процесса, не предусматривающий разрыва связи Х–Н. В инертных растворителях кислотно-основное взаимодействие обычно останавливается на стадии Н-комплекса.

Что касается основности органических соединений и их способности принимать участие в образовании Н-связи, то здесь тоже наблюдаются большие различия. Так, при одной и той же способности к образованию водородных связей степень основности аминов на 5 порядков выше, чем у пиридинов, и на 13 порядков выше, чем у замещенных карбонильных соединений.

На основе экспериментальных данных установлена линейная корреляция между степенью переноса заряда и энергией межмолекулярных Н-связей, являющаяся важным доводом в пользу донорно-акцепторной природы последних. Существенное влияние на образование водородной связи могут оказывать стерические факторы. Например, орто-замещенные фенолы менее склонны к самоассоциации, чем соответствующие мета- и пара-изомеры, полностью отсутствует ассоциация у 2,6-ди-трет .-бутилфенола. С повышением температуры количество молекулярных комплексов в смеси уменьшается, и они значительно реже встречаются в газовой фазе.

В начале курсовой было отмечено, что водородная связь занимает промежуточное положение между истинной (валентной) химической связью и слабым межмолекулярным взаимодействием. Куда ближе? Ответ неоднозначный, так как диапазон колебаний энергий Н-связей довольно широк. Если же речь идет о сильных водородных связях, способных оказывать существенное влияние на свойства веществ, то они ближе к истинным химическим связям. И это определяется не только довольно высокой энергией Н-связи, но и тем, что она локализована в пространстве, водородный мостик имеет своих “персональных” партнеров. Направление действия водородной связи также фиксировано, хотя и не столь жестко, как для истинных химических связей.

5. Водородные связи с свойства органических соединений

Водородная связь возникает при взаимодействии кислотных Х–Н и основных В групп, принадлежащих одной или разным молекулам. При объединении одинаковых молекул образуются ассоциаты, объединение разных молекул принято называть молекулярными комплексами (Н-комплексами). Такие взаимодействия составляют самый обширный класс Н-связей, называемых межмолекулярными водородными связями. Межмолекулярные взаимодействия не ограничиваются образованием бинарных комплексов, а могут приводить к структурам со множественными связями (вода, фтористый водород, спирты, фенолы, амиды, полипептиды, белки). Межмолекулярные водородные связи могут приводить к образованию цепей, колец или пространственных сеток. Аналогичные образования сохраняются и в кристаллах.

Если Н-связывание наступает в результате взаимодействия кислотного и основного фрагментов внутри одной молекулы, то образующиеся связи называют внутримолекулярными. Соединения с такими связями составляют другую большую группу соединений с водородной связью. Естественно, что образование внутримолекулярных водородных связей возможно, если структура молекулы допускает пространственное сближение фрагментов Х–Н и В до длины водородной связи. Возможность образования внутримолекулярной водородной связи не является препятствием для образования и межмолекулярных водородных связей. В качестве примера рассмотрим изомерные орто- и парагидроксибензальдегиды. Салициловый альдегид (орто-изомер) способен к образованию как внутри-, так и межмолекулярных водородных связей, тогда как для пара-изомера положение взаимодействующих групп допускает образование только межмолекулярных водородных связей

Экспериментально довольно легко отличить внутримолекулярную водородную связь от межмолекулярной. Если спектрально фиксируется образование Н-связей, а признаков ассоциации нет, это верное указание на внутримолекулярный характер водородной связи. Кроме того, межмолекулярная Н-связь (и ее спектральное проявление) исчезает при низкой концентрации вещества в нейтральном растворителе, тогда как внутримолекулярная Н-связь в этих условиях сохраняется.

Водородные связи влияют на перераспределение электронной плотности в молекулах, что не может не отразиться на свойствах веществ. В случае слабых водородных связей изменение электронной плотности протекает в основном в пределах фрагмента Х–Н В. С увеличением энергии водородной связи перераспределение электронной плотности затрагивает все атомы молекул, входящих в молекулярный комплекс, что в конечном итоге приводит к глубоким изменениям физических и химических свойств веществ. На свойства органических соединений оказывают значительное влияние как внутри-, так и межмолекулярные водородные связи. Влияние последних, особенно на физические свойства, является более существенным, так как межмолекулярные взаимодействия приводят к увеличению молекулярной массы со всеми вытекающими последствиями.

Теперь попытаемся ориентировочно оценить, насколько широко представлены водородные связи в органической химии. Все органические соединения за самым редким исключением содержат водород, то есть являются кислотами Бренстеда, а наиболее часто входящие в их состав элементы-органогены (O, N, S, галогены) содержат неподеленные пары электронов и могут выступать в качестве основных центров. Учитывая отмеченное, можно сказать, что большинство органических соединений потенциально способно к образованию водородных связей. По структурной формуле (природа взаимодействующих групп и их взаимное расположение) можно предсказать силу водородных связей и их характер (внутри- или межмолекулярные). При оценке взаимного влияния атомов в молекулах обязательно учитываются возможность образования водородных связей и их последующее влияние на скорость, механизм и направление реакций. Оценить влияние среды (растворителя) на ход химического процесса часто становится возможным лишь с учетом образования водородных связей. Таким образом, подготовка грамотного химика невозможна без овладения всем комплексом вопросов, связанных с водородной связью.

Рассмотрим несколько наиболее характерных примеров влияния водородных связей на свойства органических соединений. Прежде всего это так называемые прототропные процессы – превращения, связанные с переносом протона. Известно, что енольные структуры (гидроксильная группа находится при углероде с кратной связью =С–ОН) являются неустойчивыми и в органической химии часто такие формулы берут в квадратные скобки как указание на их нереальность, гипотетичность. В то же время β- дикетоны и другие 1,3-дикарбонильные соединения способны существовать в двух формах: кетонной и енольной. Для ацетоуксусного эфира эти превращения могут быть представлены схемой

Образование энергетически менее выгодной енольной формы объясняется как формированием системы сопряженных связей С=С–С=О, что всегда является стабилизирующим фактором, так и тем обстоятельством, что между енольным гидроксилом и карбонильным кислородом образуется внутримолекулярная водородная связь, понижающая свободную энергию енольной формы как путем “закрепления” атома водорода у более электроотрицательного элемента, так и в результате удлинения цепи сопряжения (Н-связь включена в круговую цепь сопряжения). С учетом водородных связей не только объясняют реальность енольной структуры, но и количество этой формы в таутомерной системе. На состояние кето-енольного равновесия большое влияние оказывает природа растворителя. Максимальное количество енольной формы отмечается в нейтральных неполярных растворителях (углеводороды). В водных растворах количество енольной формы незначительно, так как вода конкурентно образует с карбонильным кислородом межмолекулярные водородные связи, разрушая стабилизирующие енольную форму внутримолекулярные водородные связи.

Карбоновые кислоты, как и спирты, могут участвовать в образовании Н-связей как в роли Н-доноров, так и Н-акцепторов. В первом случае кислотность снижается, во втором возрастает. Это ярко проявляется при ионизации двухосновных кислот: первая константа диссоциации (K 1) аномально велика, а вторая (K 2) аномально мала. Для объяснения наблюдаемых экспериментальных результатов кроме электронных эффектов большая роль придается вкладу Н-связей. В исходной структуре Н-связь сильно активирует карбоксильную группу, выступающую в роли Н-акцептора. В образовавшемся на первой стадии диссоциации моноанионе образуется прочная внутримолекулярная Н-связь, резко снижающая кислотность второго карбоксила:

Для карбоновых кислот характерно образование Н-комплексов и ассоциатов псевдоциклической структуры:

Межмолекулярные связи, возникающие между молекулами карбоновых кислот, настолько прочны, что даже в газообразном состоянии димерные структуры частично сохраняются. Кстати, образование димера карбоновой кислоты помогает дать ответ на давний вопрос, что в большей степени определяет прочность водородной связи – кислотность группы Х–Н или основность фрагмента В. Уксусная кислота (pK a = 4,7) по кислотности на несколько порядков уступая трихлоруксусной (pK a = 0,6), тем не менее образует более прочный димер. Основность протоноакцептора имеет приоритет перед кислотностью протонодонора.

Известно, что геминальные дигидроксипроизводные являются нестабильными соединениями – дегидратируясь легко превращаются в соответствующие альдегиды или кетоны. Хлоральгидрат является одним из немногих примеров, когда структура гем- диола является стабильной. И причину этого объясняют как сильным отрицательным индукционным эффектом (-I-эффект) трихлорметильной группы, так и наличием внутримолекулярных Н-связей:

Не имея возможности остановиться на других примерах влияния водородной связи на свойства органических соединений, приведем таблицу сравнительных характеристик проявления меж- и внутримолекулярных Н-связей (табл. 1 (по )).

Образование внутри- и межмолекулярных водородных связей может существенно влиять на ход и скорость химических реакций. К сожалению, несмотря на значительное количество работ, посвященных этому вопросу, широких обобщений, которые имели бы предсказательную силу, не последовало. В самых общих чертах показано, что скорость реакций может уменьшаться или увеличиваться в зависимости от того, как при образовании Н-связи будет перераспределяться электронная плотность в реакционных центрах молекулы. Такие вопросы, как природа промежуточных продуктов или активированного комплекса, изменение термодинамических функций, влияние соседних групп, не получили должного развития. Более определенно дана оценка роли растворителя.

Известно много эмпирических подходов. Так, в реакциях алкилирования соединений, содержащих связи О–Н, S–H, N–H, введение в реакционную среду фторида калия (фторид-анион F− является самым эффективным протоноакцептором) значительно увеличивает скорости реакций и выходы продуктов алкилирования. Большая роль водородным связям отводится в реакциях, проводимых в растворителях, способных образовывать Н-связи как с исходными соединениями, так и с продуктами их взаимодействия.

Заключение

Представленная информация о водородной связи указывает на ее широкую распространенность и многообразие условий, в которых она может возникать. Описание природы Н-связей является менее строгим, чем, например, трактовка валентных химических связей. Не существует даже общепринятого определения Н-связей. В то же время реальное существование водородных связей и их способность влиять на структуру и свойства веществ общепризнаны и давно приняты на вооружение химиками-практиками.

Роль водородных связей в живой материи определяется не только тем, что без Н-связей нельзя себе представить структуру белков (носителей жизни) или двойную спираль нуклеиновых кислот. Без водородных связей совершенно иными были бы физические и химические свойства самого распространенного вещества на Земле – воды, в которой и зародилась жизнь.



Загрузка...